首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
We investigated central place foraging (CPF) in the context of optimal foraging theory in Adélie penguins Pygoscelis adeliae of the southern Ross Sea by using satellite tracking and time‐depth recorders to explore foraging at two spatio‐temporal scales: within the day‐to‐day (sub‐mesoscale: single foraging trip, 10s of km2) and the entire breeding season (mesoscale: trips by multiple individuals across the collective foraging area, 100s of km2). Specifically, we examine whether three basic assumptions of the Orians–Pearson CPF model, shown to occur in other CPF species, are met: 1) within a patch, the rate of prey acquisition declines with time spent in that patch; 2) food is distributed in discrete patches and is not available between those patches; and 3) CPF species have knowledge of the potential (or average, at least) feeding rate within their universe of patches, and use this knowledge to determine their foraging strategy when planning or engaging in a foraging trip. We found that prey consumption rates did not decline with time spent in patches, and penguins foraged to some degree most of the time when at sea. Food availability, as measured by foraging dive rate, appeared to be predictable within the same day at the same location, but predictability broke down after 2 d at distances > 10 km away. We conclude that the assumptions of the Orians–Pearson CPF model are not a good fit to the circumstances of Ross Sea penguins, which clearly are central place foragers.  相似文献   

2.
Orians & Pearson (1979) proposed a series of models of optimal central place foraging. I tested their model for single-prey loading species (those that carry items singly) with a natural population of white-fronted bee-eaters (Merops bullockoides) in Kenya. These insectivorous birds breed in colonies but defend nearby foraging territories from which they gather food for their nestlings. Qualitatively, two predictions of the model were upheld: as travel time increased, birds carried larger insects to their nests and spent longer periods of time foraging. Also, as distance increased, birds were increasingly selective of which insects they ate versus carried to the colony. Quantitative comparisons were also made using observed travel times and rates of insect capture. As distance increased, (1) the observed sizes of insects carried approached the values predicted by the Orians-Pearson model, (2) observed foraging times diverged from the predicted values, and (3) birds spent more time foraging between round trips in a relatively unprofitable area near the colony. These results are examined in light of the theory of central place foraging.  相似文献   

3.
Eiiti Kasuya 《Animal behaviour》1982,30(4):1010-1014
The water collection behaviour of colony foundresses of a Japanese paper wasp, Polistes chinensis antennalis, was recorded. A single round-trip of water collection consists of (1) an outward flight, (2) water-sucking, and (3) a homeward flight. The rate of water intake decreased as the length of water-sucking increased. There was a positive correlation between the duration of the outward flight and that of water-sucking. The variance of time for outward flights was larger than that for homeward flights. The data were consistent with the predictions of the central place foraging model of Orians & Pearson (1979).  相似文献   

4.
Orians & Pearson (1979) considered the optimal foraging strategies of ‘central place foragers’, animals that repeatedly return with their food to a fixed location. We tested some of their predictions on eastern chipmunks, Tamias striatus. The rate of cheek pouch loading declines as the pouches fill; thus the optimal load size may vary, depending on the time required to travel between the feeding site and burrow. This ‘travel time’ may also affect the choice of feeding site. A method was developed to test this, and preliminary results confirm the hypothesis. Methodological and theoretical implications of these empirical results are discussed.  相似文献   

5.
Chipmunks filling their cheek pouches with sunflower seeds decrease their rate of loading as their cheek pouches fill. Under these conditions, Charnov's (1976) marginal value theorem, as adapted for load size in ‘central place foragers’ by Orians & Pearson (1979), predicts an increase in load size with increased travel time between the foraging site and burrow. This prediction was verified. However, the quantitative predictive value of the theory is questioned because it failed to predict accurately either the actual loads or the trend in load size with distance.  相似文献   

6.
Some predictions of Orians & Pearson's (1979) models for central place foragers (CPF) were tested with three species of swellows (Hirundinidae). House martins (Delichon urbica) and sand martins (Riparia riparia) brought larger food loads to the nest mainly when foraging distances were great, whereas swallows (Hirundo rustica) gathered large loads when food was plentiful. For all three species the outcome conformed qualitatively with the predictions of the CPF models. Overall, house martins were the most sensitive to travel time effects, but in a quantitative test the predicted load size was 20–40% less than the observed size for a range of realistic travel times. Additional models are presented which emphasize the significance of foraging techniques and foraging costs for optimal load size in multiple prey loaders.  相似文献   

7.
FLAVIO QUINTANA 《Ibis》2001,143(3):547-553
During 1996 and 1997, foraging Rock Shags Phalacrocorax magellanicus were studied at Punta Loma, Argentina using radio-transmitters deployed on ten adult shags during the chick-rearing period. Rock Shags undertook 2.6 ± 0.6 sd trips per day. The mean duration of a feeding trip was 2.6 ± 0.7 hours. A bird spent 36% of daylight hours away from the colony on feeding trips, diving for 92% of the foraging trip, and made a mean of 106 dives per foraging trip. Foraging trip duration was strongly correlated with the total number of dives made in one foraging trip. Rock Shags fed mainly in water less than 10m deep with a gravelly sand bottom and within 5 km of shore. Mean foraging range was 3.8 ± 2.6 km and 2.6 ± 2.3 km for 1996 and 1997, respectively. These results suggest a high foraging effort (diving time per foraging trip) for Rock Shags, presumably associated with poor food conditions close to the colony. Comparison is made with other Phalacrocorax species.  相似文献   

8.
Consistent intra‐population variability in foraging behaviour is found among a wide range of taxa. Such foraging specialisations are common among marine vertebrates, yet it is not clear how individuals repeatedly locate prey or foraging sites at ocean‐wide scales. Using GPS and time‐depth loggers we studied the fine‐scale foraging behaviour of central‐place northern gannets Morus bassanus at two large colonies. First, we estimated the degree of consistency in individual foraging routes and sites across repeated trips. Second, we tested for individual differences in searching behaviour in response to environmental covariates using reaction norms, estimated from mixed effect models. Adult gannets tracked over multiple foraging trips showed repeatable between‐individual differences in terminal points and departure angles of foraging trips, but low repeatability in trip duration and trip length. Importantly, individual birds showed highly repeatable dive locations, with consistently different environmental conditions (such as copepod abundance), suggesting a high degree of foraging site specialisation. Gannets also showed between‐individual differences in searching behaviour along environmental gradients, such that individuals intensified searching under different conditions. Together these results suggest that widespread individual foraging consistency may represent specialisation and be linked with individual responses to environmental conditions. Such divergent searching behaviour could provide a mechanism by which consistent foraging behaviour arises and is maintained among animals that forage across large spatial scales.  相似文献   

9.
This study investigated how female Antarctic fur seals adapt their foraging behavior, over time scales of days, to spatial unpredictability in the distribution of their food. Lactating Antarctic fur seals are central-place foragers that feed on highly patchy but spatially and temporally dynamic food. We measured the foraging distribution of 28 fur seals to test whether variation in foraging trip durations was reflected in variation in the location of foraging and the diving behavior of seals at sea. Based on the maximum distance travelled from the breeding beach, three categories of foraging trips were denned: those to the continental shelf area ( n = 12, median = 71 km), to oceanic water ( n = 11, median =164 km), and to farther offshore oceanic waters ( n = 5, median = 260 km). Trip duration and mean surface speed were positively correlated with the maximum distance travelled from the breeding beach. Seals on longer trips spent proportionally less of their time submerged, but there was no significant difference in the total number of dives or the total time spent foraging by seals in relation to trip duration. Evidence from this study and previous work investigating energy gain suggests that an animal on a longer foraging trip could potentially have a higher mean energy return per dive than a similar animal on a shorter foraging trip. Evidence presented suggests that the type of foraging trip (near or far) is not predetermined by the animal but may be a simple response to the stochastic distribution of the resources available.  相似文献   

10.
We measured individual decisions regarding the adjustments of time, distance and direction of foraging in Dinoponera quadriceps. We observed two colonies in an area of secondary Atlantic Forest, FLONA-ICMBio, in Northeastern Brazil. The workers were individually marked. We recorded the displacement of workers, their returns to the nest with and without food, the time spent searching for food, maximum and total distance, inter-trip latency and direction of trips. The time spent searching for food, maximum distance and transport velocity did not vary with food size. The previous trip success reduced the latency between foraging trips and increased the percentage of success on the next trip. However, this previous success did not demonstrate a significant variation relative to the time spent searching on the next trip or direction of search. The workers maintained an individual directional fidelity during foraging. The adjustments of these foraging variables under individual control contributed to the efficiency at the colony level. D. quadriceps is compatible with the central place theory and risk sensitivity model of behavior.  相似文献   

11.
The native bee Nannotrigona perilampoides Cresson (Apidae: Meliponini) has been evaluated with promising results in greenhouse pollination of Solanaceae in Mexico. However, no comparison has been done with imported bumble bees (Apidae: Bombini), which are the most common bees used for greenhouse pollination. We compared the foraging activity and fruit production of habanero pepper. Capsicum chinense Jacquin, by using N. perilampoides and Bombus impatiens Cresson in pollination cages. Both bee species collected pollen on a similar number of flowers per unit time, but N. perilampoides visited significantly more flowers per trip, lasted longer on each flower, and spent more time per foraging trip. Ambient temperature and light intensity significantly affected the foraging activity of N. perilampoides. Light intensity was the only environmental variable that affected B. impatiens. Except for the fruit set, there were not significant differences in the quality of fruit produced by both bee species; however, N. perilampoides and B. impatiens performed better than mechanical vibration for all the variables measured. The abortion of fruit caused the low fruit set produced by B. impatiens, and we speculate it might be due to an excessive visitation rate. Pollination efficiency per visit (Spear's pollination efficiency index) was similar for both bee species in spite of the significantly lower amount of pollen removed by N. perilampoides. We suggested that the highest number of flowers visited per foraging trip coupled with adequate amounts of pollen transported, and transferred between flowers, could explain the performance of N. perilampoides as a good pollinator of habanero pepper. Our experiments confirm that N. perilampoides could be used as an alternative pollinator to Bombus in hot pepper under tropical climates.  相似文献   

12.
Sexual differences in food provisioning rates of monomorphic seabirds are well known but poorly understood. Here, we address three hypotheses that attempt to explain female-biased food provisioning in common guillemots Uria aalge : (1) males spend more time in nest defence, (2) females have greater foraging efficiency, and (3) males allocate a greater proportion of foraging effort to self-maintenance. We found that males spent no more time with chicks than females but made longer trips and travelled further from the colony. There was extensive overlap between sexes in core foraging areas, indicating that females were not excluding males from feeding opportunities close to the colony. However, as a result of their longer trips, the total foraging areas of males were much greater than those of females. There was no difference between sexes in overall dive rate per hour at sea, in behaviour during individual dives or in a number of other measures of foraging efficiency including the frequency, depth and duration of dives and the dive: pause ratio during the final dive bout of each trip, which was presumably used by both sexes to obtain prey for the chick. These data strongly suggest that sexes did not differ in their ability to locate and capture prey. Yet males made almost twice as many dives per trip as females, suggesting that males made more dives than females for their own benefit. These results support the hypothesis that female-biased food provisioning arose from a difference between sexes in the allocation of foraging effort between parents and offspring, in anticipation of a prolonged period of male-only post-fledging care of the chick, and not from differences in foraging efficiency or time spent in nest defence.  相似文献   

13.
Central place foraging by larvae of the charaxine butterfly,Polyura pyrrhus, was studied. Larvae made foraging trips from the silken pads they constructed on leaflets of their foodplant,Acacia sp. A foraging trip sometimes involved complete depletion of a single patch of foodplant pinnules. Larvae which did not deplete a patch appeared to eat until they were satiated, whereas larvae which depleted a patch either visited another patch (multiple-patch foraging) or returned directly to the pad (single-patch foraging). If the food intake at the first patch was small a larva tended to make a “multiple-patch” decision, especially when the pinnule-patch was distant from the resting pad. The duration between successive foraging trips (resting time on the pad) was much longer than the round trip duration: on average about 3 h and 15 min, respectively. The resting time is suggested to be a handling time (i.e., digesting food in the gut) and was disproportional to the amount of food consumed, i.e., the handling efficiency was higher when the larva consumed a larger amount of food. This may be the reason why larvae usually ate until they were satiated. A food-intake-rate maximizing model was constructed to describe the decision rule as to whether a larva should make a single-patch or a multiple-patch foraging trip. One of the model's predictions (i.e., larvae should engage in multiple-patch foraging when the food intake at the first patch is small) qualitatively corresponds with data, however, the model does not explain the effect of travelling time on decision making in larvae. Several other factors which may influence the decision making of larvae are discussed.  相似文献   

14.
During reproduction, seabirds need to balance the demands of self- and offspring-provisioning within the constraints imposed by central place foraging. To assess behavioral adjustments and tolerances to these constraints, we studied the feeding tactics and reproductive success of common murres (also known as common guillemots) Uria aalge , at their largest and most offshore colony (Funk Island) where parents travel long distances to deliver a single capelin Mallotus villosus to their chicks. We assessed changes in the distance murres traveled from the colony, their proximate foraging locations and prey size choice during two successive years in which capelin exhibited an order of magnitude decrease in density and a shift from aggregated (2004) to dispersed (2005) distributions. When capelin availability was low (2005), parental murres increased their maximum foraging distances by 35% (60 to 81 km) and delivered significantly larger capelin to chicks, as predicted by central place foraging theory. Murres preferred large (>140 mm) relative to small capelin (100–140 mm) in both years, but unexpectedly this preference increased as the relative density of large capelin decreased. We conclude that single prey-loading murres target larger capelin during long foraging trips as parents are 'forced' to select the best prey for their offspring. Low fledgling masses suggest also that increased foraging time when capelin is scarce may come at a cost to the chicks (i.e. fewer meals per day). Murres at this colony may be functioning near physiological limits above which further or sustained adjustments in foraging effort could compromise the life-time reproductive success of this long-lived seabird.  相似文献   

15.
Because endocrine mechanisms are thought to mediate behavioral responses to changes in the environment, examining these mechanisms is essential for understanding how long-lived seabirds adjust their foraging decisions to contrasting environmental conditions in order to maximize their fitness. In this context, the hormone corticosterone (CORT) deserves specific attention because of its major connections with locomotor activities. We examined for the first time the relationships between individual CORT levels and measurements of foraging success and behavior using satellite tracking and blood sampling from wandering albatrosses (Diomedea exulans) before (pretrip CORT levels) and after (posttrip CORT levels) foraging trips during the incubation period. Plasma CORT levels decreased after a foraging trip, and the level of posttrip CORT was negatively correlated with individual foraging success, calculated as total mass gain over a foraging trip. Pretrip CORT levels were not linked to time spent at sea but were positively correlated with daily distance traveled and maximum range at sea. In this study, we were able to highlight the sensitivity of CORT levels to variation in energy intake, and we showed for the first time that individual CORT levels can be explained by variation in foraging success. Relationships between pretrip CORT levels and daily distance traveled and maximum range were independent of pretrip body mass, suggesting that slight elevations in pretrip CORT levels might facilitate locomotor activity. However, because both foraging behavior and pretrip CORT levels could be affected by individual quality, future experimental studies including manipulation of CORT levels are needed to test whether CORT can mediate foraging decisions according to foraging conditions.  相似文献   

16.
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the ‘central place’ and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour.  相似文献   

17.
In this paper I am concerned with the behaviour of seabirds that bring back just one prey item at a time to their young. I use a simple model from central place foraging theory to show that the size of fish that a parent bird brings back may increase or decrease with an increase in the abundance of fish. This means that it may not be possible to use the size of fish that is fed to the young as an indicator of prey abundance.  相似文献   

18.
Boyd  I. L. 《Behavioral ecology》1999,10(2):198-208
This study examined three competing hypotheses to explain howlactating Antarctic fur seals (Arctocephalus gazella) respondto changes in the level of resource availability. Antarcticfur seals have episodic bouts of suckling (1-3 days), alternatingwith foraging trips (3-10 days). Foraging time budgets variedsignificantly (p <.001) among 8 consecutive years at BirdIsland, South Georgia. Foraging trip duration increased during periodsof relative food shortage. Time spent ashore was more consistentamong years than foraging trip duration but declined duringa year of particularly low food availability. In 4 of the 8years, there was a significant positive correlation betweentime spent ashore and foraging trip duration. In the other years,the relationship was close to statistical significance. Energydelivery to pups during suckling bouts followed an asymptoticpower function. Energy gain during foraging trips was estimatedfrom diving behavior, which suggested that the energy gain functionwas linear. Distance traveled during foraging trips was correlatedwith foraging trip duration, and long foraging trips were associatedwith reduced foraging intensity. There was support for the hypothesisthat lactating Antarctic fur seals compensate for reduced resources byincreasing the foraging trip duration rather than working harderand increasing their energy expenditure. However, there wasmost support for the hypothesis that lactating Antarctic furseals adjust time spent ashore as well as foraging trip duration,possibly to maximize the delivery of food to their offspring.Lactation appears to impose constraints on provisioning of offspringthat differ from those of seabirds foraging in the same environment andoften on the same prey.  相似文献   

19.
This study investigates the movements of Magellanic Penguins Spheniscus magellanicus breeding on Isla Martillo during the early chick-rearing period. Foraging paths were reconstructed using GPS loggers that registered the penguins′ geographic position, water temperature and depth at regular intervals. The relationship between penguins′ movements and search strategies, tide and tidal currents were assessed. Mean trip duration was on average 14.7 ± 6.9 h (33% overnight), and the maximum distance reached was 24 ± 10 km. All penguins studied foraged to the east of the colony. We identified three phases based on the sinuosity and speed of the trajectory: transit, central and return. Foraging effort was higher during the central phase, followed by the transit phase, and lower in the return phase. Foraging success, measured as the percentage of time at the bottom during each phase, was also highest during the central phase. In all birds studied, the central phase of the foraging trip took place during ebb tide, and birds travelled to the foraging areas with flow tide running in the same direction of displacement. Our study suggests that penguins take advantage of tidal currents to facilitate their movements to and from the main foraging area, thereby reducing the energy expended. Moreover, we suggest that piscivorous diving birds may enhance their catch rate during ebb tide when fish are more concentrated near the channel bed.  相似文献   

20.
Summary Several predictions of central place foraging theory were tested. As predicted, beavers foraged more selectively at increasing distance from the central place. With increasing distance from the river's edge, beavers cut fewer branches and deleted small branches from their diet. Large branches were favored at all distances, which differs from patterns observed in previous studies of beaver foraging. This difference, however, is expected and supports Schoener's (1979) predictions which are based on differences between provisioning costs and item size.The selective harvesting of branches predicted by foraging theory affects plant growth form and may influence plant reproductive patterns. High rates of branch removal caused cottonwoods to develop a shrubby architecture. The importance of selective branch choice by beavers on patterns of cottonwood reproduction (i.e., delayed sexual maturity and induced cloning) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号