首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal and peripheral modulation of pentagastrin-stimulated gastric acid secretion by the pancreatic polypeptide-fold (PP-fold) peptides, neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), in urethane-anesthetized rats was evaluated. Neuropeptide Y, PYY, and PP (400 pmol) were administered via intravenous (IV) and intrathecal (IT) injections. The 2 antagonist, yohimbine, was used to evaluate the role of the 2 adrenergic receptors in the modulation of pentagastrin-stimulated gastric acid secretion by NPY, PYY, and PP. Peptide YY and PP (IV) rapidly increased pentagastrin-stimulated gastric acid secretion. Peptide YY and PP (IT) increased pentagastrin-stimulated gastric acid secretion following administration into the thoracic (T8–T10) region of the spinal cord. The 2 adrenergic receptor antagonist, yohimbine, did not modify the increases in pentagastrin-stimulated gastric acid secretion following PYY and PP (IV or IT) administration. Neuropeptide Y (IT) decreased pentagastrin-stimulated gastric acid secretion. However, in the presence of 2 adrenergic receptor blockade, pentagastrin-stimulated gastric acid secretion was potentiated by NPY (IT) administration. Therefore, the inhibitory effect of NPY (IT) on pentagastrin-stimulated gastric acid secretion required the activation of 2 adrenergic receptors in the spinal cord of rats. Mean arterial blood pressure (MAP) was increased immediately following NPY and PYY (IV) administration. During the same time period, PP (IV) decreased MAP in anesthetized rats. Mean arterial blood pressure was rapidly increased by NPY and PYY (IT) in anesthetized rats. The increase in MAP following PYY (IT) was partially attenuated in the presence of yohimbine. The modulation of MAP and gastric acid secretion by the PP-fold peptides occurred by independent mechanisms at spinal and peripheral sites in the rat. The modulation of pentagastrin-stimulated gastric acid secretion by PYY and PP in rats differed from that of the third member of the PP-fold family, NPY, following spinal and peripheral administration.  相似文献   

2.
Previous studies have indicated that plasma levels of peptide YY (PYY) increase significantly after a meal. The purpose of this study was to characterize the interaction of PYY and secretin in the inhibition of gastric acid secretion, and to determine whether PYY can influence acid-induced inhibition of gastric acid secretion in conscious dogs. I.v. administration of PYY at 200 pmol/kg/h inhibited pentagastrin (1 microgram/kg/h)-stimulated gastric acid output (P less than 0.05). PYY further augmented i.v. secretin-induced inhibition of pentagastrin-stimulated gastric acid output by 32 +/- 7%, and intraduodenal hydrochloric acid-induced inhibition of pentagastrin-stimulated gastric acid output by 40 +/- 12%. The mean integrated release of secretin response to duodenal acidification (3.9 +/- 1.0 ng-[0-60] min/ml) was not affected by PYY (3.3 +/- 0.9 ng-[0-60] min/ml). The present study demonstrates that PYY can interact with secretin and duodenal acidification in an additive fashion to inhibit pentagastrin-stimulated gastric acid secretion. Our results suggest that several hormones that are released postprandially can interact with each other to inhibit gastric acid secretion.  相似文献   

3.
The role of prostaglandins as mediators of the inhibitory effect of somatostatin on gastric acid secretion has been evaluated in conscious and anesthetized rats. The effect of somatostatin on bethanechol-stimulated gastric acid secretion was determined with or without indomethacin pretreatment. Prostaglandin synthesis inhibition (less than 90%) by indomethacin was verified with PGE2-generation assay on gastric mucosal tissue. In both conscious and anesthetized rats somatostatin significantly inhibited the stimulated acid output in the control and indomethacin pretreated groups. The present findings do not support a role for prostaglandins in the inhibition of gastric acid secretion by somatostatin in the rat.  相似文献   

4.
Pituitary adenylate cyclase-activating polypeptide (PACAP), existing in two variants, PACAP-27 and PACAP-38, is found in the enteric nervous system and regulates function of the digestive system. However, the regulatory mechanism of PACAP on gastric acid secretion has not been well elucidated. We investigated the inhibitory action of PACAP-27 on acid secretion and its mechanism in isolated vascularly perfused rat stomach. PACAP-27 in four graded doses (5, 10, 20, and 50 microg/h) was vascularly infused to determine its effect on basal and pentagastrin (50 ng/h)-stimulated acid secretion. To study the inhibitory mechanism of PACAP-27 on acid secretion, a rabbit antisecretin serum, antisomatostatin serum, or indomethacin was administered. Concentrations of secretin, somatostatin, PGE(2), and histamine in portal venous effluent were measured by RIA. PACAP-27 dose-dependently inhibited both basal and pentagastrin-stimulated acid secretion. PACAP-27 at 10 microg/h significantly increased concentrations of secretin, somatostatin, and PGE(2) in basal or pentagastrin-stimulated state. The inhibitory effect of PACAP-27 on pentagastrin-stimulated acid secretion was reversed 33% by an antisecretin serum, 80.0% by an antisomatostatin serum, and 46.1% by indomethacin. The antisecretin serum partially reduced PACAP-27-induced local release of somatostatin and PGE(2). PACAP-27 at 10 microg/h elevated histamine level in portal venous effluent, which was further increased by antisomatostatin serum. However, antisomatostatin serum did not significantly increase acid secretion. It is concluded that PACAP-27 inhibits both basal and pentagastrin-stimulated gastric acid secretion. The effect of PACAP-27 is mediated by local release of secretin, somatostatin, and PGE(2) in isolated perfused rat stomach. The increase in somatostatin and PGE(2) levels in portal venous effluent is, in part, attributable to local action of the endogenous secretin.  相似文献   

5.
Somatostatin-like immunoreactivity (SLI) was extracted from the canine pancreas and purified by ion exchange, affinity chromatography and gel filtration. The 1600 dalton fraction, which is physicochemically similar to synthetic somatostatin was infused into the peripheral circulation of anesthetized rats and its effect upon gastric acid secretion was compared with that of synthetic somatostatin. Both synthetic somatostatin and pancreatic SLI in a dose of 7–8 μg/kg/h suppressed pentagastrin-stimulated gastric acid secretion. It is concluded that the highly purified 1600 dalton fraction of canine pancreatic SLI, like synthetic somatostatin, can exert biological activity upon the stomach of rats.  相似文献   

6.
The effect of capsaicin on basal and pentagastrin-stimulated gastric acid secretion was investigated in the urethane anaesthetized acute gastric fistula rat. Gastric acid secretion was measured by flushing of the gastric lumen with saline every 15 min or by continuous gastric perfusion. Capsaicin given into the rat stomach at 120 ng x mL(-1) prior to pentagastrin (25 microg x kg(-1), iv) reduced gastric acid secretory response to pentagastrin by 24%. Intravenous (iv) capsaicin (0.5 microg x kg(-1)) did not reduce the pentagastrin-stimulated gastric acid secretion. After topical capsaicin desensitization (3 mg x mL(-1)), basal gastric acid secretion and that in response to pentagastrin (25 microg x kg(-1), intraperitonaeally) was unaltered compared with the control group. Data indicate that topical capsaicin inhibits gastric acid secretion stimulated with pentagastrin in anaesthetized rats.  相似文献   

7.
B H Hirst  E Arilla  D H Coy  B Shaw 《Peptides》1984,5(5):857-860
The gastric inhibitory activity of cyclic hexa- and pentapeptide analogues of somatostatin was investigated in conscious cats with gastric fistulae. Gastric acid and pepsin secretions were stimulated by pentagastrin. Cyclo(Phe-Phe-D-Trp-Lys-Thr-Phe) showed no inhibition of acid secretion at molar doses up to 50-times the ID50 for somatostatin. This peptide inhibited pepsin secretion at the highest dose (50 micrograms kg-1 hr-1), and its potency is approximately 0.005 compared with somatostatin (1.0). Cyclo(Pro-Phe-D-Trp-Lys-Thr-Phe) inhibited acid (approximately 50%) and pepsin (approximately 85%) secretions, but the inhibition was not dose-related being similar with doses of 10 to 50 micrograms kg-1 hr-1. The cyclic pentapeptide, cyclo(7-aminoheptanoyl-Phe-D-Trp-Lys-Thr), was inactive in the dose range studied, with a potency less than 0.01. Cyclo[7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)] has been described as a somatostatin antagonist with respect to inhibition of growth hormone, insulin and glucagon release in rats [2]. Up to 60-fold molar excesses of this peptide failed to antagonise the inhibitory activity of somatostatin in the stomach. The results demonstrate that residues outside the central 6-11 region of somatostatin are very important for its gastric activity. The lack of gastric antagonistic activity of the pentapeptide antagonist indicates that these residues are likely to be involved in receptor recognition/binding.  相似文献   

8.
Piqueras L  Taché Y  Martinez V 《Peptides》2004,25(8):1287-1295
The role of somatostatin in galanin-induced inhibition of gastric acid secretion in urethane-anesthetized mice was investigated by using immunoneutralization of endogenous somatostatin and somatostatin receptor type 2 (SSTR2) knockout mice. Intravenous galanin (10 and 20 microg/kg/h) inhibited pentagastrin-stimulated gastric acid secretion by 47 and 33%, respectively. Somatostatin antibody injected i.v. increased acid secretion by 3.5-fold over basal levels but did not modify the antisecretory effects of galanin. Urethane-anesthetized SSTR2 knockout mice had a basal secretion 14-fold higher than wild-type animals, that was inhibited by galanin (10 and 20 microg/kg/h) by 49 and 31% respectively. In mice galanin inhibits gastric acid secretion through a somatostatin-independent mechanism.  相似文献   

9.
Neurotensin and somatostatin have both been shown to inhibit gastric acid secretion, but no interaction between these peptides has been demonstrated. To determine whether somatostatin might be a mediator of neurotensin's effect on pentagastrin-stimulated gastric acid secretion, we performed the following three experiments. First, we collected 0.2-ml samples of portal venous blood as frequently as every 5 min, and we confirmed a significant release of somatostatin-like immunoreactivity into portal venous blood during neurotensin-induced inhibition of acid secretion. This release of somatostatin-like immunoreactivity and inhibition of acid secretion were only seen in pentobarbital-anesthetized rats, but no sustained release of somatostatin-like immunoreactivity or inhibition of acid secretion occurred in urethane-anesthetized animals. In the second experiment, we analyzed portal plasma by high pressure liquid chromatography, and found that portal somatostatin-like immunoreactivity in blood collected during neurotensin infusion was composed of a single peak corresponding to somatostatin-14. In the third experiment, we found that infusion of antibody to somatostatin prevented neurotensin from inhibiting pentagastrin-stimulated acid secretion. Taken together, these data show that somatostatin, possibly from the stomach itself, is a necessary mediator of neurotensin's inhibitory effect in pentobarbital-anesthetized rats.  相似文献   

10.
We studied the effect of the intravenous infusion of 16,16-dimethylprostaglandin E2 methyl ester (di-M-PGE2) and somatostatin on bombesin-stimulated gastric acid secretion, plasma gastrin and plasma pancreatic polypeptide in four chronic gastric fistula dogs. Bombesin-stimulated gastric acid secretion was significantly inhibited by somatostatin and virtually abolished by di-M-PGE2. Both agents caused significant, but indistinguishable inhibition of gastrin release (P less than 0.05). Bombesin-stimulated pancreatic polypeptide release was also significantly inhibited by both somatostatin and di-M-PGE2; the inhibitory effect of somatostatin was significantly greater than that of di-M-PGE2 (P less than 0.05). This study provides further evidence in support of the complex interrelationships between agents responsible for the modulation of gastrointestinal physiology.  相似文献   

11.
W J Rossowski  D H Coy 《Life sciences》1989,44(24):1807-1813
The effects of galanin and two galanin fragments, GAL(9-29) and GAL(15-29), were studied for potential effects on pentagastrin- and bethanechol-stimulated gastric acid secretion in a pentobarbital-anesthetized rat experimental model. At a dose of 10 micrograms/kg/h, galanin potently inhibited pentagastrin-stimulated gastric acid secretion whereas inhibition of bethanechol-stimulated gastric acid secretion was not statistically significant. Simultaneous iv infusion of galanin and atropine did not affect the inhibitory action of the former. In similar experiments, a GAL(15-29) fragment was completely inactive whilst GAL(9-29) retained only about 5% potency. These results indicate that galanin probably induces its inhibitory effects by acting directly on the parietal cells rather than through a cholinergic pathway. They also demonstrate that the rat gastric acid inhibitory activity of galanin depends critically on the integrity of the first fourteen N-terminal amino acids.  相似文献   

12.
The existence of possible local mediators of the inhibitory effect of neurotensin on gastric acid secretion has not been determined. We perfused rats intragastrically with warmed saline and stimulated acid secretion with intravenous pentagastrin, 32 micrograms/kg/hr, and found that anesthesia with pentobarbital resulted in marked inhibition of acid secretion by intravenous neurotensin; however, anesthesia with urethane prevented this inhibitory effect of neurotensin from occurring. In addition, we found a significant increase in somatostatin-like immunoreactivity in portal venous blood during neurotensin infusion in pentobarbital-anesthetized rats. Neither neurotensin nor pentagastrin infusion modified gastric luminal somatostatin-like immunoreactivity after either pentobarbital or urethane, and rats anesthetized with urethane did not show an increase of somatostatin-like immunoreactivity in portal venous blood during neurotensin infusion. These results suggested that somatostatin-like immunoreactivity, released into the portal circulation, was necessary for exogenous neurotensin to inhibit pentagastrin-stimulated gastric acid secretion under these conditions in anesthetized rats.  相似文献   

13.
The gastric protection, diarrheogenic and arterial hypotensive effects of MDL-646, a PGE1 derivative, have been studied in rats. The compound administered p.o. or i.v. was able to inhibit the macroscopic damage to gastric mucosa produced by noxious stimuli (ethanol and indomethacin). In the stomach perfusion test with the anesthetized rat, intravenously administered MDL-646 reduced histamine- or pentagastrin-stimulated gastric secretion. After intraduodenal administration (i.d.) doses at least 40-50 times greater were necessary for an antisecretory effect. In conscious rats with chronic gastric fistulas, intragastrically administered (i.g.) MDL-646 affected both acid concentration and volume of unstimulated gastric secretion. In experimental models for gastric lesions, MDL-646 was much more potent after oral (p.o.) (15-30 times) than after i.v. administration. (ED50 micrograms/kg: vs. alcohol lesions, 0.05 p.o. and 0.7 i.v.; vs. indomethacin ulcers, 7.0 p.o. and 195 i.v.). Our data would fit the hypothesis that it was a local effect on the gastric mucosa. The mechanism of this effect is not known. The supposed local activity coupled with the antisecretory effects and the good tolerability make it interesting to test MDL-646 as an anti-ulcer agent in man.  相似文献   

14.
This study investigated the action of enprostil, a synthetic analog of PGE2, on gastric HCO3- secretion in humans and on duodenal HCO3- secretion in the anesthetized rat. A previously validated 2-component model was used to calculate gastric HCO3- and H+ secretion in 10 human subjects. Compared to placebo, a single 70 micrograms oral dose of enprostil increased basal gastric HCO3- secretion from 1810 +/- 340 to 3190 +/- 890 mumol/hr (P less than 0.05). In addition, enprostil reduced basal gastric H+ secretion from 5240 +/- 1140 to 1680 +/- 530 mumol/hr (P less than 0.02). Enprostil also increased HCO3- secretion and reduced H+ secretion during intravenous pentagastrin infusion. In the rat, duodenal HCO3- secretion was measured by direct titration in situ using perfused segments of duodenum just distal to the Brunner gland area and devoid of pancreatic and biliary secretions. Addition of enprostil (10 micrograms/ml) to the duodenal bathing solution increased duodenal HCO3- secretion from 6.3 +/- 1.3 to 15.1 +/- 2.0 mumol/cm X hr (P less than 0.01, n = 6). The stimulatory action of enprostil on duodenal HCO3- secretion at 10 micrograms/ml was comparable in magnitude and duration to that of 10 micrograms/ml natural PGE2. In summary, the PGE2 analog enprostil stimulated gastroduodenal HCO3- secretion, effects which may be beneficial in protection of the gastroduodenal mucosa against luminal acid.  相似文献   

15.
The influence of gamma-aminobutyric acid (GABA) on gastric somatostatin and gastrin release was studied using an isolated perfused rat stomach preparation. GABA dose-dependently inhibited somatostatin release (maximal inhibition of 44% at 10(-5)M GABA), whereas gastrin secretion was not affected. The GABA agonist muscimol led to a decrease in somatostatin release of similar magnitude. The GABA-induced changes were partially reversed by 10(-5)M atropine. Gastrin secretion was not influenced by either protocol. It is concluded that GABA as a putative neurotransmitter in the enteric nervous system is inhibitory to rat gastric somatostatin release in vitro via cholinergic pathways.  相似文献   

16.
PYY is released from the distal ileum by fat and may be involved in mediating lipid-induced inhibition of gastric acid secretion and intestinal motility. The role of PYY in intestinal lipid-induced inhibition of gastric emptying in awake rats was investigated using a specific polyclonal antibody raised against PYY. METHODS: Gastric emptying of liquids was measured in awake rats fitted with a Thomas gastric cannula. Intralipid (total dose 50 or 100 mg) was perfused for 10 min (0.05 ml/min) into a duodenal (n = 11) or mid-intestinal cannula (60 cm from Ligament of Treitz; n = 8), and gastric emptying was measured over the 5-10 min period. Gastric emptying was measured 15 min after IP injection of PYY (1 nmol/rat). PYY antibody (20 mg) or a control antibody (anti-KLH; keyhole limpet hemocyanin) was injected ip 8-12 h before experiments. RESULTS: Exogenous PYY (1 nmol) inhibited gastric emptying and administration of PYY antibody blocked this response. Perfusion of lipid (50 and 100 mg) into the proximal intestine produced a 46% and 66% inhibition of gastric emptying respectively. Inhibition of gastric emptying in response to 50 mg lipid in the proximal small intestine was unaffected by administration of PYY antibody but was abolished by administration of the CCK A receptor antagonist devazepide (0.1 mg/kg ip). Perfusion of lipid into the distal intestine (50 and 100 mg) inhibited gastric emptying by 10% and 32% respectively. Inhibition of gastric emptying in response to 100 mg lipid in the distal intestine was unaffected by PYY antibody. CONCLUSIONS: Lipid perfused into either the proximal or distal intestine inhibits gastric emptying via a PYY-independent mechanism. CCK is involved in proximal lipid induced inhibition of gastric emptying.  相似文献   

17.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

18.
The site of action of peripheral peptide YY (PYY)-induced inhibition of vagally stimulated gastric acid secretion was studied using immunoneutralization with PYY antibody in urethan-anesthetized rats. Gastric acid secretion (59+/-7 micromol/90 min) stimulated by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368 (14 pmol/rat) was dose-dependently inhibited by 52%, 69%, and 83% by intravenous infusion of 0.25, 0.5, and 1.0 nmol. kg(-1) x h(-1) PYY, respectively. PYY or PYY(3-36) (2.4 pmol/rat) injected intracisternally also inhibited the acid response to intracisternal RX-77368 by 73% and 80%, respectively. Intravenous pretreatment with PYY antibody (4.5 mg/rat), which shows a 35% cross-reaction with PYY(3-36) by RIA, completely prevented the inhibitory effect of intravenously infused PYY (1 nmol x kg(-1) x h(-1)). When injected intracisternally, the PYY antibody (280 microg/rat) reversed intracisternal PYY (2.4 pmol)- and intravenous PYY (1 nmol x kg(-1) x h(-1))-induced inhibition of acid response to intracisternal RX-77368 by 64% and 93.5%, respectively. These results provide supporting evidence that peripheral PYY inhibits central vagal stimulation of gastric acid secretion through an action in the brain.  相似文献   

19.
The Mastomys (Praomys natalensis) species are a unique natural model in which the bioactivity of gastric carcinoids may be studied. Several investigators have previously demonstrated that these tumors contain large amounts of histamine. In this study we investigated the presence of peptides associated with the neoplasm. The levels and location of gastrin, gastric inhibitory peptide (GIP), neurotensin, peptide YY (PYY), pancreatic polypeptide (PP), glucagon, bombesin, vasoactive intestinal peptide (VIP) and somatostatin (SRIF) were investigated by radioimmunoassay and immunocytochemistry. In addition the distribution of these peptides were evaluated in the gastrointestinal tract of young and old animals to investigate possible age-related changes. PYY and enteroglucagon (EG) were significantly (P less than 0.001) elevated in both tumor tissue (676 +/- 152, 551 +/- 164 pmol/g) and plasma (620 +/- 160, 500 +/- 147 pmol/l) of tumor-bearing animals. Immunocytochemistry revealed PYY- and EG-like immunoreactivity in 20-30% of tumor cells. A significant decrease (P less than 0.05) in bombesin was noted in older animals, but no changes in gastric tissue content of PYY or EG could be detected between young and old animals. Gastrin was not detected in tumors and there were no significant changes in tissue or plasma levels with age. Small bowel concentrations of VIP and PYY were higher in the older mastomys (P less than 0.05). In contrast, colonic levels of bombesin, VIP, somatostatin and PYY were significantly lower (P less than 0.05) in older mastomys compared with young. The age-related changes in several peptides may reflect an adaptive response to acid hypersecretion. The multi-hormonal character of these neoplasms suggests that these tumors develop from a pluripotential stem cell.  相似文献   

20.
Effects of cytochalasin E on the secretion of mucus and protein were investigated in gastric fistula rats. Direct exposure of the gastric mucosa to cytochalasin E (5-20 micrograms/ml) significantly stimulated the secretory rate of soluble mucus and protein in pentagastrin-stimulated rats. The amount of surface mucus gel was also increased. The stimulatory effect was increased with increased concentrations of cytochalasin. Histological study suggests that the cytochalasin stimulated the release of mucus from the cell. The increase in secretory rate of protein was not due to an increase of pepsin secretion but rather was the consequence of the increase in mucus secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号