首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A precursor RNA molecule (pre-msdRNA) of approximately 375 bases is considered to form a stable secondary structure which serves as a primer as well as a template to synthesize the branched RNA-linked multicopy single-stranded DNA (msDNA) of Myxococcus xanthus. When 3-base mismatches were introduced into the stem structure immediately upstream of the branched rG residue to which msDNA is linked by a 2',5'-phosphodiester linkage, the production of msDNA was almost completely blocked. However, if additional 3-base substitutions were made on the other strand to resume the complementary base pairing, msDNA production was restored, being consistent with the proposed model of msDNA synthesis. We also found that the branched rG residue of pre-msdRNA could not be replaced with either rC or rA, while the 5' end (dC) of msDNA which is linked to the branched rG could be substituted with a dG residue. Together with several other mutations, the structural requirements of pre-msdRNA are discussed with respect to the mechanism of msDNA biosynthesis.  相似文献   

2.
3.
T Furuichi  S Inouye  M Inouye 《Cell》1987,48(1):55-62
Stigmatella aurantiaca, a gram-negative bacterium, contains approximately 500 copies per cell of a short single-stranded linear DNA (multicopy single-stranded DNA: msDNA). This DNA is attached to a branched RNA (msdRNA) by its 5' end. The entire sequence of msdRNA was determined and found to consist of 76 bases. The msDNA is linked at the 19th G residue of msdRNA by a 2', 5' phosphodiester linkage. The coding region for msdRNA (msr) is located downstream of the coding region for msDNA (msd). These coding regions exist in opposite orientation with respect to each other and overlap by 8 bases at their 3' ends. Biosynthesis of RNA-linked msDNA was characterized and mechanisms of synthesis are proposed.  相似文献   

4.
A Dhundale  B Lampson  T Furuichi  M Inouye  S Inouye 《Cell》1987,51(6):1105-1112
The branched RNA (msdRNA) of M. xanthus consists of 77 bases. The 20th rG residue is linked to the 5' end of msDNA, consisting of 162 bases, by a 2', 5' phosphodiester linkage. The msdRNA coding region is located on the chromosome in the opposite orientation to the msDNA coding region, with the 3' ends overlapping by eight bases. S1 nuclease mapping experiments indicate that the primary product of msdRNA is much longer at both the 5' and 3' ends (approximately 375 bases). Because of homologous sequences upstream of the msdRNA and msDNA coding regions, the precursor RNA molecule is considered to form an extremely stable stem-and-loop structure (delta G = -210 kcal). We propose a novel mechanism of DNA synthesis in which the stem-and-loop structure serves as a primer as well as a template to form the branched RNA-linked msDNA.  相似文献   

5.
T Furuichi  A Dhundale  M Inouye  S Inouye 《Cell》1987,48(1):47-53
Stigmatella aurantiaca is a gliding, gram-negative bacterium that shows a spectacular fruiting body formation upon starvation of nutrient. This bacterium was found to contain approximately 500 copies per cell of a short single-stranded linear DNA (multicopy single-stranded DNA: msDNA). The primary structure of msDNA was determined and found to consist of 162 or 163 deoxyribonucleotides. Its unique chromosomal gene was cloned and sequenced. The msDNA was found to be attached to a branched RNA by its 5' end. Structural analysis of the branched RNA revealed that it consists of a triribonucleotide, 5'A-G-(C or U)3', and that msDNA is branched out from the 2' position of the rG residue forming a 2', 5' phosphodiester linkage with the dC residue at the 5' end of msDNA.  相似文献   

6.
7.
K Kim  D Jeong    D Lim 《Journal of bacteriology》1997,179(20):6518-6521
Multicopy single-stranded DNA (msDNA) molecules consist of single-stranded DNA covalently linked to RNA. Such molecules are encoded by genetic elements called retrons. Unlike other retrons, retron EC83 isolated from Escherichia coli 161 produces RNA-free msDNA by site-specific cleavage of msDNA at 5'-TTGA/A-3', where the slash indicates the cleavage site. In order to investigate factors responsible for the msDNA cleavage, retron EC83 was treated with hydroxylamine and colonies were screened for cleavage-negative mutants. We isolated three mutants which were defective in msDNA cleavage and produced RNA-linked msDNA. They were all affected in msd, a gene for msDNA, with a base substitution at the bottom part of the msDNA stem. In contrast, base substitution at and around the cleavage site has no marked effect on msDNA synthesis or its cleavage. From these results, we concluded that the nucleotides at the bottom of the msDNA stem, but not the nucleotides at the cleavage site, play a major role in the recognition and cleavage of msDNA EC83.  相似文献   

8.
9.
10.
11.
12.
A deletion mutation of the gene (msd-msr) for the branched RNA-linked msDNA of Myxococcus xanthus was constructed by replacing the chromosomal 0.7-kilobase (kb) SmaI-XhoI fragment encompassing msd-msr with a 1.4-kb fragment carrying a gene for kanamycin resistance. It was found that this deletion strain (delta msSX) could not produce msDNA, although it still contained another species of msDNA, mrDNA (msDNA, reduced size). No apparent differences between delta msSX and the wild-type strain were observed in terms of cell growth, morphogenesis, fruiting-body formation, or motility. Both a deletion mutation at the region 100 base pairs upstream of msd and an insertion mutation at a site 500 base pairs upstream of msd showed a significant reduction of msDNA production, indicating that there is a cis- or trans-acting positive element in this region. When the 3.5-kb BamHI fragment carrying msd-msr from Stigmatella aurantiaca was inserted into the M. xanthus chromosome, the S. aurantiaca msDNA was found to be produced in M. xanthus.  相似文献   

13.
T Yee  T Furuichi  S Inouye  M Inouye 《Cell》1984,38(1):203-209
A gram-negative bacterium, Myxococcus xanthus, was found to contain 500 to 700 copies per chromosome of a short single-stranded linear DNA fragment. When this DNA (multicopy single-stranded DNA; msDNA) labeled at the 5' end with kinase was used as a probe against total chromosomal blots, it hybridized to unique high molecular weight bands, which were cloned and sequenced. Labeling of msDNA was also possible using the Klenow fragment of DNA polymerase I as well as terminal deoxynucleotidyl transferase, permitting direct sequencing. The 5' end of msDNA was found to be primed by a short RNA segment. The DNA portion of msDNA consisted of 163 bases. Exact correspondence was seen between the msDNA sequence and the sequence of a chromosomal clone. An elaborate secondary structure is postulated for the msDNA sequence. A similar satellite DNA was also found in another myxobacterium, Stigmatella aurantiaca.  相似文献   

14.
15.
16.
17.
18.
Multicopy single-stranded DNA (msDNA) molecules consist of single-stranded DNA covalently linked to RNA. In Escherichia coli , such molecules are encoded by genetic elements called retrons. The DNA moieties of msDNAs have characteristic stem-loop structures, and most of these structures contain mismatched base pairs. Previously, we showed that retrons encoding msDNAs with mismatched base pairs are mutagenic when present in multicopy plasmids. In this study we show that such msDNAs, in a similar manner to genetic defects in mismatch repair, increase the frequency of interspecies recombination in matings between Salmonella typhimurium and E. coli . To demonstrate interference with mismatch repair by msDNA, we show that the addition of a plasmid containing the gene for MutS protein suppresses the mutagenic and recombinogenic effects of msDNAs. We also show that in mutS mutants, msDNA does not increase the frequency of either mutations or interspecies recombination. We conclude from these findings that the mutagenic and recombinogenic effects of msDNAs are due to titrating out MutS protein.  相似文献   

19.
Various branched DNA structures were created from synthetic, partly complementary oligonucleotides combined under annealing conditions. Appropriate mixtures of oligonucleotides generated three specific branched duplex DNA molecules: (i) a Holliday junction analog having a fixed (immobile) crossover bounded by four duplex DNA branches, (ii) a similar Holliday junction analog which is capable of limited branch migration and, (iii) a Y-junction, with three duplex branches and fixed branch point. Each of these novel structures was specifically cleaved by bacteriophage T7 gene 3 product, endonuclease I. The cleavage reaction "resolved" the two Holliday structure analogs into pairs of duplex DNA products half the size of the original molecules. The point of cleavage in the fixed-junction molecules was predominantly one nucleotide removed to the 5' side of the expected crossover position. Multiple cleavage positions were mapped on the Holliday junction with the mobile, or variable, branch point, to sites consistent with the unrestricted movement of the phosphodiester crossover within the region of limited dyad symmetry which characterizes this molecule. Based on the cleavage pattern observed with this latter substrate, the enzyme displayed a modest degree of sequence specificity, preferring a pyrimidine on the 3' side of the cleavage site. Branched molecules that were partial duplexes (lower order complexes which possessed single-stranded as well as duplex DNA branches) were also substrates for the enzyme. In these molecules, the cleaved phosphodiester bonds were in duplex regions only and predominantly one nucleotide to the 5' side of the branch point. The phosphodiester positions 5' of the branch point in single-stranded arms were not cleaved. Under identical reaction conditions, individually treated oligonucleotides were completely refractory. Thus, cleavage by T7 endonuclease I displays great structural specificity with an efficiency that can vary slightly according to the DNA sequence.  相似文献   

20.
The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号