共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Highly conserved sequences at the 5′ splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5′ and 3′ splice sites, and the activation of cryptic U12-dependent branch/3′ splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3′ splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection. 相似文献
3.
Bandorowicz-Pikula J Kirilenko A van Deursen R Golczak M Kühnel M Lancelin JM Pikula S Buchet R 《Biochemistry》2003,42(30):9137-9146
Reaction-induced infrared difference spectroscopy (RIDS) has been used to investigate the nature of interactions of human annexin A6 (ANXA6) with nucleotides. RIDS results for ANXA6, obtained after the photorelease of GTP-gamma-S, ATP, or P(i) from the respective caged compounds, were identical, suggesting that the interactions between the nucleotide and ANXA6 were dominated by the phosphate groups. Phosphate-induced structural changes in ANXA6 were small and affected only seven or eight amino acid residues. The GTP fluorescent analogue, 2'(3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP), quenched tryptophan fluorescence of ANXA6 when bound to the protein. A binding stoichiometry of 1 mol of nucleotide/mol ANXA6 was established with a K(D) value of 2.8 microM for TNP-GTP. The bands observed on RIDS of ANXA6 halves (e.g., N-terminal half, ANXA6a, and C-terminal half, ANXA6b) were similar to those of the whole molecule. However, their amplitudes were smaller by a factor of 2 compared to those of whole ANXA6. TNP-GTP bound to both fragments of ANXA6 with a stoichiometry of 0.5 mol/mol. However, the binding affinities of ANXA6a and ANXA6b differed from that of ANXA6. Simulated molecular modeling revealed a nucleotide-binding site which was distributed in two distinct domains. Residues K296, Y297, K598, and K644 of ANXA6 were less than 3 A from the bound phosphate groups of either GTP or ATP. The presence of two identical sequences in ANXA6 with the F-X-X-K-Y-D/E-K-S-L motif, located in the middle of ANXA6, at residues 293-301 (within ANXA6a) and at 641-649 (within ANXA6b), suggested that the F-X-X-K-Y-D/E-K-S-L motif was the putative sequence in ANXA6 for nucleotide binding. 相似文献
4.
5.
N-Glycosylation is a cotranslational and post-translational process of proteins that may influence protein folding, maturation, stability, trafficking, and consequently cell surface expression of functional channels. Here we have characterized two consensus N-glycosylation sequences of a voltage-gated K+ channel (Kv3.1). Glycosylation of Kv3.1 protein from rat brain and infected Sf9 cells was demonstrated by an electrophoretic mobility shift assay. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced a much faster-migrating Kv3.1 immunoband than that of undigested brain membranes. To demonstrate N-glycosylation of wild-type Kv3.1 in Sf9 cells, cells were treated with tunicamycin. Also, partially purified proteins were digested with either PNGase F or endoglycosidase H. Attachment of simple-type oligosaccharides at positions 220 and 229 was directly shown by single (N229Q and N220Q) and double (N220Q/N229Q) Kv3.1 mutants. Functional measurements and membrane fractionation of infected Sf9 cells showed that unglycosylated Kv3.1s were transported to the plasma membrane. Unitary conductance of N220Q/N229Q was similar to that of the wild-type Kv3.1. However, whole cell currents of N220Q/N229Q channels had slower activation rates, and a slight positive shift in voltage dependence compared to wild-type Kv3.1. The voltage dependence of channel activation for N229Q and N220Q was much like that for N220Q/N229Q. These results demonstrate that the S1-S2 linker is topologically extracellular, and that N-glycosylation influences the opening of the voltage-dependent gate of Kv3.1. We suggest that occupancy of the sites is critical for folding and maturation of the functional Kv3.1 at the cell surface. 相似文献
6.
Beta thalassemia due to a novel mutation in IVS 1 sequence donor site consensus sequence creating a restriction site 总被引:1,自引:0,他引:1
C Lapoumeroulie J Pagnier A Bank D Labie R Krishnamoorthy 《Biochemical and biophysical research communications》1986,139(2):709-713
During a systematic screening of Algerian thalassemics by determining the DNA polymorphism haplotypes in the beta globin gene cluster, a novel haplotype was identified. The DNA of a homozygous individual was cloned and sequenced. The mutation, a G----A change, at position 5 of the small intervening sequence, probably interferes with normal splicing events, and, moreover, creates a new Eco RV restriction site that provides a useful diagnostic tool for detecting this condition. 相似文献
7.
Kikuchi M Kataoka M Kojima T Horibe T Fujieda K Kimura T Tanaka T 《Archives of biochemistry and biophysics》2004,422(2):221-229
We aimed to identify antibodies that can recognize the Asn-Xaa-Ser/Thr(NXS/T) N-glycosylation site that guides oligosaccharyltransferase (OT) activity. We used synthetic Asn-Cys-Ser/Thr(NCS/T) tripeptides conjugated to bovine serum albumin to isolate single chain antibody fragments of a variable region (scFv) from the Griffin 1 phage antibody library. Although Ser and Thr have different side chains, the scFv proteins thus isolated bound to both NCS and NCT with Kd values of the order of 10(-6) M and accepted the substitution of the Cys residue with various amino acids, including Ala, Gly, and Val. However, these proteins recognized neither Asn-Pro-Ser/Thr nor non-NXS/T tripeptides. The scFv proteins recognized NCS/T and N-glycosylation site of mutant yeast protein disulfide isomerase when they were in their native but not denatured state. These results indicate that antibody recognition of the NXS/T motif is conformation dependent and suggest that NXS/T spontaneously adopts a specific conformation that is necessary for antibody recognition. These features are likely to correlate with the known binding specificity of OT. 相似文献
8.
Identification of a novel consensus sequence at the cleavage site of the Lassa virus glycoprotein 下载免费PDF全文
The Lassa virus glycoprotein consists of an amino-terminal and a carboxy-terminal cleavage fragment designated GP-1 and GP-2, respectively, that are derived by proteolysis from the precursor GP-C. The membrane-anchored GP-2 obtained from purified virions of the Josiah strain revealed the N-terminal tripeptide GTF(262) when analyzed by Edman degradation. Upstream of this site, GP-C contains the tetrapeptide sequence RRLL(259), which is conserved in all Lassa virus isolates published to date. Systematic mutational analysis of vector-expressed GP-C revealed that the motif R-X (L/I/V)-L(259) (where X stands for L, I, or V) is essential for cleavage of the peptide bond between leucine(259) and glycine(260). This cleavage motif is homologous to the consensus sequence recognized by a novel class of cellular endoproteases which have so far not been implicated in the processing of viral glycoproteins. 相似文献
9.
Like many transposons the bacterial insertion sequence IS903 was thought to insert randomly. However, using both genetic and statistical approaches, we have derived a target site for IS903 that is used 84% of the time. Computational and genetic analyses of multiple IS903 insertion sites predicted a preferred target consisting of a 21 bp palindromic pattern centered on the 9 bp target duplication generated during transposition. Here we show that targeting can be dissected into four components: the 5 bp flanking sequences, the most important sequences required for site-specific insertion; the 7 bp palindromic core within the target duplication; the dinucleotide pair at the transposon-target junction; and the local DNA context. Finally, using a substrate with multiple target sites we show that a target site is more likely found by a local bind-and-slide model and not by extended DNA tracking. 相似文献
10.
IS231A insertion specificity: consensus sequence and DNA bending at the target site 总被引:11,自引:1,他引:10
Bernard Hallet René Rezsöhazy Jacques Mahilton Jean Delcour 《Molecular microbiology》1994,14(1):131-139
In its natural host, Bacillus thuringiensis, the insertion sequence IS231A is preferentially inserted into the terminal inverted repeats of the transposon Tn4430. Using a novel transposition assay, we demonstrate that the Tn4430 ends behave as insertion hot spots for IS231A in Escherichia coli. Sequence analysis reveals that IS231A insertion sites match the 5′-GGG(N)5CCC-3′consensus. However, this consensus is not the only determinant of IS231A insertion specificity. Although both Tn4430 ends have identical sequences, one is strongly preferred to the other and the orientation of insertion into this end is not random. We demonstrate that this preference is determined by the flanking regions of the site. These regions display a conserved periodic organization of their sequence which, by conferring anisotropic flexibility, would induce the DNA to bend in a roughly ‘S’ -shaped structure centred on the target consensus. DNA conformation analysis by polyacrylamide gel electrophoresis indeed shows that the preferred target site of IS231A is flanked by DNA segments curved in opposite directions. We present a model in which DNA bendability and curvature would contribute to the positioning of IS231A transposase on the target DNA. 相似文献
11.
Theoretical conformational analysis of oligopeptides CH3CO-Asn-X-Thr-NHCH3 (X = Gly, Ala, Pro), modelling N-glycosylation site, and their glycosylated derivatives CH3CO-(GlcNAc beta 1-4GlcNAc beta 1) Asn-X-Thr-NHCH3 has been carried out. Active conformations of the site are found, corresponding to structural prerequisities of N-glycosylation: Asn residue's position in beta-turn and hydrogen bond formation between side chains of Asn and Thr/Ser residues. In this case the L conformation of the central residue X is most probable. Since Pro residue does not possess this conformation, sequences with X = Pro are not glycosylated. It is shown that glycosylation of the above-mentioned sites is accompanied by reorientation of the Asn residue's side chains. 相似文献
12.
The human Na+-sulfate cotransporter (hNaSi-1) belongs to the SLC13 gene family, which also includes the high-affinity Na+-sulfate cotransporter (hSUT-1) and the Na+-dicarboxylate cotransporters (NaDC). In this study, the location and functional role of the N-glycosylation site of hNaSi-1 were studied using antifusion protein antibodies. Polyclonal antibodies against a glutathione S-transferase fusion protein containing a 65-amino acid peptide of hNaSi-1 (GST-Si65) were raised in rabbits, purified, and then used in Western blotting and immunofluorescence experiments. The antibodies recognized native NaSi-1 proteins in pig and rat brush-border membrane vesicles as well as the recombinant proteins expressed in Xenopus oocytes. Wild-type hNaSi-1 and two N-glycosylation site mutant proteins, N591Y and N591A, were functionally expressed and studied in Xenopus oocytes. The apparent mass of N591Y was not affected by treatment with peptide-N-glycosylase F, in contrast to the mass of wild-type hNaSi-1, which was reduced by up to 15 kDa, indicating that Asn591 is the N-glycosylation site. Although the cell surface abundance of the two glycosylation site mutants, N591Y and N591A, was greater than that of wild-type hNaSi-1, both mutants had greatly reduced Vmax, with no change in Km. These results suggest that Asn591 and/or N-glycosylation is critical for transport activity in NaSi-1. antifusion protein antibodies; Xenopus oocytes; sulfate; immunofluorescence 相似文献
13.
Aitken A 《Molecular biotechnology》1999,12(3):241-253
The large number of protein consensus sequences that may be recognized without computer analysis are reviewed. These include
the extensive range of known phosphorylation site motifs for protein kinases; metal binding sites for calcium, zinc, copper,
and iron; enzyme active site motifs; nucleotide binding and covalent attachment sites for prosthetic groups, carbohydrate,
and lipids. Of particular note is the increasing realization of the importance for cellular regulation of protein-protein
interaction motifs and sequences that target proteins to particular subcellular locations. This article includes an introduction
to accessing the many suites of programs for analysis of protein structure, signatures of protein families, and consensus
sequences that may be carried out on the internet. 相似文献
14.
15.
Mattera R Ritter B Sidhu SS McPherson PS Bonifacino JS 《The Journal of biological chemistry》2004,279(9):8018-8028
The heterotetrameric adaptor complex 1 (AP-1) and the monomeric Golgi-localized, gamma ear-containing, Arf-binding (GGA) proteins are components of clathrin coats associated with the trans-Golgi network and endosomes. The carboxyl-terminal ear domains (or gamma-adaptin ear (GAE) domains) of two gamma-adaptin subunit isoforms of AP-1 and of the GGAs are structurally similar and bind to a common set of accessory proteins. In this study, we have systematically defined a core tetrapeptide motif PsiG(P/D/E)(Psi/L/M) (where Psi is an aromatic residue), which is responsible for the interactions of accessory proteins with GAE domains. The definition of this motif has allowed us to identify novel GAE-binding partners named NECAP and aftiphilin, which also contain clathrin-binding motifs. These findings shed light on the mechanism of accessory protein recruitment to trans-Golgi network and endosomal clathrin coats. 相似文献
16.
Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase 总被引:54,自引:0,他引:54
Synthetic peptides have been used to define the consensus amino acid sequence for substrate recognition by the meiosis-activated myelin basic protein (MBP) kinase (p44mpk), which was purified from maturing sea star oocytes. This protein kinase shares many properties with the mitogen-activated microtubule-associated protein-2 kinase (p42mapk) in vertebrates. Recently, Thr-97 in the tryptic fragment KNIVTPRTPPPSQGK of bovine MBP was identified as the major site of phosphorylation by p44mpk (Sanghera, J. S., Aebersold, R., Morrison, H. D., Bures, E. J., and Pelech, S. L. (1990) FEBS Lett. 273, 223-226). Synthetic peptides modeled after this sequence revealed that the presence of a proline residue C-terminal (+1 position) to the phosphorylatable threonine (or serine) residue was critical for recognition by p44mpk. Although not essential, a proline residue located at the -2 position enhanced the Vmax of peptide phosphorylation. Basic, acidic, and non-polar residues were equally tolerated at the -1 position. The presence of an amino acid residue at position -3 also increased peptide phosphorylation. Thus, the optimum consensus sequence for phosphorylation by p44mpk was defined as Pro-X-(Ser/Thr)-Pro, where X is a variable amino acid residue, but ideally not a Pro. Peptides that included this sequence were phosphorylated by p44mpk with Vmax values approaching 1 mumol.min-1.mg-1 and with apparent Km values of approximately 1 mM). Pseudosubstrate peptides in which the phosphorylatable residue was replaced by valine or alanine were weak inhibitors of p44mpk (apparent Ki values of approximately 3 mM). Over 40 distinct protein kinases contain Pro-X-(Ser/Thr)-Pro sequences including the human receptors for insulin and epidermal growth factor, and kinases encoded by the human proto-oncogenes abl, neu, and raf-1, and Schizosaccharomyces pombe cell cycle control genes ran-1 and wee-1. Multiple putative sites were also identified in rat microtubule-associated protein-2, human retinoblastoma protein, human tau protein, and Drosophila myb protein and RNA polymerase II. 相似文献
17.
Bogerd HP Benson RE Truant R Herold A Phingbodhipakkiya M Cullen BR 《The Journal of biological chemistry》1999,274(14):9771-9777
The low cytoplasmic and high nuclear concentration of the GTP-bound form of Ran provides directionality for both nuclear protein import and export. Both import and export factors bind RanGTP directly, yet this interaction produces opposite effects; in the former case, RanGTP binding induces nuclear cargo release, whereas in the latter, RanGTP binding induces nuclear cargo assembly. Therefore, nuclear import and export receptors and their protein recognition sites are predicted to be distinct. Nevertheless, the approximately 38-amino acid M9 sequence present in heterogeneous nuclear ribonucleoprotein A1 has been reported to serve as both a nuclear localization signal and a nuclear export signal, even though only one protein, the nuclear import factor transportin, has been shown to bind M9 directly. We have used a combination of mutational randomization followed by selection for transportin binding to exhaustively define amino acids in M9 that are critical for transportin binding in vivo. As expected, the resultant approximately 12-amino acid transportin-binding consensus sequence is also predictive of nuclear localization signal activity. Surprisingly, however, this extensive mutational analysis failed to dissect M9 nuclear localization signal and nuclear export signal function. Nevertheless, transportin appears unlikely to be the M9 export receptor, as RanGTP can be shown to block M9 binding by transportin not only in vitro, but also in the nucleus in vivo. This analysis therefore predicts the existence of a nuclear export receptor distinct from transportin that nevertheless shares a common protein-binding site on heterogeneous nuclear ribonucleoprotein A1. 相似文献
18.
From the study of plant hemoglobin protein and gene sequences, a consensus sequence was constructed and analysed by computer
methods; analysis comprised the amino acid composition, hydropathy profile, and match degree with other plant and non-plant
hemoglobin sequences. Resulting consensus sequence shows the main features of hemoglobin genes and proteins in plants. 相似文献
19.
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes. 相似文献
20.
Daniel Baron Anne-Marie Leseney Francois-Regis Chalaoux Jacques Riand 《Biopolymers》1994,34(10):1419-1431
Two synthetic fragments, corresponding to the 4–9 and 4–14 sequences of a tetradecapeptide used as a model to test the RXVRG-endoprotease activity from Xenopus laevis skin, have been studied by two-dimensional nmr spectroscopies, correlated spectroscopy, and nuclear Overhauser effect (NOE) spectroscopy. Both peptides wore the 5–9 consensus sequence found in several hormonal precursors. The nmr data for the 4–9 hexapeptide did not indicate any particular organization, either in water or in dimethylsulfoxide (DMSO), whereas, the 4–14 undecapeptide, a substrate for the RXVRG endoprotease, showed, in DMSO solution, significant trends of structural organization involving the amino acids pertaining to the consensus domain. From variations of integrated NOE peaks with temperature, the appearent interproton correlation times τc were estimated and the maxima observed with Va17, the central residue in the consensus sequence. A defined tertiary structure in that domain was also supported by medium-and long-range NOEs between As6 and Arg8, Glu4 and Gly9, and by the likely involvement of Arg8 and Gly9 NHs in intramolecular hydrogen bonds. Most of these observations could be rationalized by an equilibrium between a 5–3 β-turn and a 9 → 4 H-bonded loop. The predominance of one rotamer for the Cα-Cβ bond was established in four residues. Finally, the average ? and ψ angles were derived from two models taking, or not, into account variations in the correlation times along the sequence. This allowed us to discuss the artifacts generated by using an average correlation time through the whole molecule. © 1994 John Wiley & Sons, Inc. 相似文献