首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzymatic activity of the CDK2/Cyclin A complex increases upon the specific phosphorylation of Thr160@CDK2. In the present study, we have performed a comparative molecular dynamics (MD) study of models of the complex CDK2/Cyclin A/Substrate, which differ for the presence or absence of the phosphate group bound to Thr160. The models are based on two X-ray structures available for CDK2/CyclinA and pCDK2/CyclinA/Substrate complexes. In this way, we analyze the influence of the phosphorylated Thr160 (pThr160) on both the flexibility of CDK2 activation loop (AL) and substrate binding in CDK2. Our calculations point to a decreased flexibility of the AL in the phosphorylated model, in fairly good agreement with experimental data, and to a key role of pThr160 for substrate recognition and stability. Multiple alignments of the CDKs sequences point to the very high conservation of the AL sequence among the CDKs, thus extending our results to all CDKs.  相似文献   

2.
肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)是一种转移率高、预后差的细胞代谢性疾病,对其有效诊疗及预后分子标志物的研究十分重要。葡萄糖6-磷酸脱氢酶(glucose 6-phosphatedehydrogenase, G6PD)在ccRCC中高表达,并提示患者不良预后,其促进ccRCC细胞增殖的分子机制有待进一步揭示。本研究发现,降低G6PD可抑制细胞周期G1/S期转化并显著抑制ccRCC细胞增殖。G6PD可在细胞水平调控G1/S期转化及增殖相关因子Cyclin D1,CDK4,CDK6,Cyclin E1和CDK2基因表达。TCGA数据库分析结果表明,ccRCC 中Cyclin D1,Cyclin E1 和 CDK2的mRNA 水平显著升高,而CDK4表达无明显差异,CDK6表达却显著降低。相关性分析结果显示,G6PD与Cyclin D1呈显著负相关(P<0.0001),G6PD与CDK4,CDK6之间无显著相关性(P>0.05),G6PD与Cyclin E1(P<0.0001)以及CDK2(P<0.05)显著正相关。进一步免疫组化检测结果表明,Cyclin E1和 CDK2在ccRCC肿瘤组织中表达显著升高。生存预后分析结果显示,Cyclin D1高表达提示ccRCC患者整体预后更为良好,CDK4和CDK6表达水平在ccRCC患者总生存率预测中无意义;而Cyclin E1和CDK2高表达均可提示ccRCC患者预后不良。进一步细胞水平检测发现,Cyclin E1、CDK2表达降低可显著逆转G6PD促进ccRCC细胞增殖的能力。综上,与增殖相关因子Cyclin D1,CDK4和CDK6相比,G6PD有可能通过促进Cyclin E1和CDK2表达升高而发挥促进 ccRCC肿瘤细胞增殖的作用,并且这3者的异常高表达有望成为ccRCC患者不良预后的独立生存预测因素。  相似文献   

3.
Small molecule inhibitors targeting CDK1/CDK2 have been clinically proven effective against a variety of tumors, albeit at the cost of profound off target toxicities. To separate potential therapeutic from toxic effects, we selectively knocked down CDK1 or CDK2 in p53 mutated HACAT cells by siRNA silencing. Using dynamic, cell cycle wide proteome arrays, we observed minor changes in overall abundance of proteins critically involved in cell cycle transition despite profound G2/M or G1/S arrest, respectively. Employing phospho site specific analyses, we identified uncoupled mitogenic, yet pro-apoptotic signaling from counter balancing anti-apoptotic activity in CDK2 disrupted cells. Moreover, a crucial role of CDK2 activity in early serum response was observed, extending well-established roles of CDKs outside their cell cycle regulating functions. In contrast, disruption of CDK1 only marginally affected phosphorylation events of crucial signaling nodes prior to G2/S transition. The data presented here suggest that the temporal separation of pro- and anti-apoptotic pathways by selective inhibition of CDK2 disrupts coherent signaling modules and may synergize with anti-proliferative drugs, averting toxic side effects from CDK1 inhibition.  相似文献   

4.
In this paper, we show that substrate specificity is primarily conferred on human mitotic cyclin-dependent kinases (CDKs) by their subcellular localization. The difference in localization of the B-type cyclin-CDKs underlies the ability of cyclin B1-CDK1 to cause chromosome condensation, reorganization of the microtubules, and disassembly of the nuclear lamina and of the Golgi apparatus, while it restricts cyclin B2-CDK1 to disassembly of the Golgi apparatus. We identify the region of cyclin B2 responsible for its localization and show that this will direct cyclin B1 to the Golgi apparatus and confer upon it the more limited properties of cyclin B2. Equally, directing cyclin B2 to the cytoplasm with the NH(2) terminus of cyclin B1 confers the broader properties of cyclin B1. Furthermore, we show that the disassembly of the Golgi apparatus initiated by either mitotic cyclin-CDK complex does not require mitogen-activated protein kinase kinase (MEK) activity.  相似文献   

5.
6.
Our previous study showed that polysaccharide (P1) from Phellinus linteus exhibits a significant inhibitive activity on human colorectal carcinoma cells (HT-29). However its novel molecular mechanism remains unknown. To obtain insights into P1’s mechanism of action, we examined its effects on cell proliferation in vitro and in vivo, cell cycle distribution, apoptosis, autophagy, and expression of several cell cycle interrelated proteins in HT-29 cells. Interestingly, we found that volume and weight of the solid tumor significantly decreased in P1 (200 mg/kg)-treated mice compared with the control. However, slightly increased the body weight of the P1 treated tumor-bearing mice, with no significant increased ALT, AST levels in serum and LPO concentration in liver and kidney indicated that P1 has no toxicity to mammals at a dose of 200 mg/kg. Furthermore, P1 caused a significantly dose-dependent increase in the S-phase cell cycle, but no apoptosis and autophagy in HT-29 cells. RT-PCR and Western blot results showed significantly down-regulated expressions of cyclin D1, cyclin E, and CDK2, as well as increased expressions of P27kip1 in P1 (100 μg/mL)-treated HT-29 cells. These results suggested that the activation of P27kip1-cyclin D1/E-CDK2 pathway is involved in P1-induced S-phase cell cycle arrest in HT-29 cells.  相似文献   

7.
FGF signaling inhibits chondrocyte proliferation and requires the function of the p107 and p130 members of the Rb protein family to execute growth arrest. p107 dephosphorylation plays a critical role in the chondrocyte response to FGF, as overexpression of cyclin D1/CDK4 complexes (the major p107 kinase) in rat chondrosarcoma (RCS) cells overcomes FGF-induced p107 dephosphorylation and growth arrest. In cells overexpressing cyclin D1/CDK4, FGF-induced downregulation of cyclin E/CDK2 activity was absent. To examine the role of cyclin E/CDK2 complexes in mediating FGF-induced growth arrest, this kinase was overexpressed in RCS cells. FGF-induced dephosphorylation of either p107 or p130 was not prevented by overexpressing cyclin E/CDK2 complexes. Unexpectedly, however, FGF-treated cells exhibited sustained proliferation even in the presence of hypophosphorylated p107 and p130. Both pocket proteins were able to form repressive complexes with E2F4 and E2F5 but these repressors were not translocated into the nucleus and therefore were unable to occupy their respective target DNA sites. Overexpressed cyclin E/CDK2 molecules were stably associated with p107 and p130 in FGF-treated cells in the context of E2F repressive complexes. Taken together, our data suggest a novel mechanism by which cyclin E/CDK2 complexes can promote cell cycle progression in the presence of dephosphorylated Rb proteins and provide a novel insight into the key Retinoblastoma/E2F/cyclin E pathway. Our data also highlight the importance of E2F4/p130 complexes for FGF-mediated growth arrest in chondrocytes.  相似文献   

8.
The increasing resistance of nasopharyngeal carcinoma to irradiation makes the exploration of effective radiosensitizers necessary. Tetrandrine is known to be an antitumor drug, but little is known regarding its radiosensitization effect on nasopharyngeal carcinoma. We investigated the effect of combined treatment of irradiation and maximum non-cytotoxic doses of tetrandrine on the nasopharyngeal carcinoma cell lines CNE1 and CNE2. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were assessed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The radiosensitization of cells receiving the maximum non-cytotoxic doses of tetrandrine was assessed by evaluating cell proliferation and DNA damage repair using MTT, clonogenic, comet assays and detection of caspase-3 and phosphorylated histone H2AX (γ-H2AX). The cell cycle was assessed by flow cytometry, and protein expression was detected by western blot analysis. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were 1.5 μmol/L and 1.8 μmol/L, respectively. When cells were exposed to irradiation and the maximum non-cytotoxic doses of tetrandrine, the survival fraction was decreased. DNA damage and γ-H2AX levels markedly increased. Moreover, tetrandrine abrogated the G2/M phase arrest caused by irradiation. Combined treatment with the maximum non-cytotoxic dose of tetrandrine and irradiation caused suppression of the phosphorylation of CDK1 and CDC25C and increase in the expression of cyclin B1. The study in vivo also showed that the maximum non-cytotoxic dose of tetrandrine could reduce tumor growth in xenograft tumor model. Our results suggest that the maximum non-cytotoxic dose of tetrandrine can enhance the radiosensitivity of CNE1 and CNE2 cells and that the underlying mechanism could be associated with abrogation of radiation-induced G2/M arrest via activation of the CDC25C/CDK1/Cyclin B1 pathway.  相似文献   

9.
FGF signaling inhibits chondrocyte proliferation and requires the function of the p107 and p130 members of the Rb protein family to execute growth arrest. p107 dephosphorylation plays a critical role in the chondrocyte response to FGF, as overexpression of cyclin D1/CDK4 complexes (the major p107 kinase) in rat chondrosarcoma (RCS) cells overcomes FGF-induced p107 dephosphorylation and growth arrest. In cells overexpressing cyclin D1/CDK4, FGF-induced downregulation of cyclin E/CDK2 activity was absent. To examine the role of cyclin E/CDK2 complexes in mediating FGF-induced growth arrest, this kinase was overexpressed in RCS cells. FGF-induced dephosphorylation of either p107 or p130 was not prevented by overexpressing cyclin E/CDK2 complexes. Unexpectedly, however, FGF-treated cells exhibited sustained proliferation even in the presence of hypophosphorylated p107 and p130. Both pocket proteins were able to form repressive complexes with E2F4 and E2F5 but these repressors were not translocated into the nucleus and therefore were unable to occupy their respective target DNA sites. Overexpressed cyclin E/CDK2 molecules were stably associated with p107 and p130 in FGF-treated cells in the context of E2F repressive complexes. Taken together, our data suggest a novel mechanism by which cyclin E/CDK2 complexes can promote cell cycle progression in the presence of dephosphorylated Rb proteins and provide a novel insight into the key Retinoblastoma/E2F/cyclin E pathway. Our data also highlight the importance of E2F4/p130 complexes for FGF-mediated growth arrest in chondrocytes.  相似文献   

10.
11.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of pyrimidine and purine deoxyribonucleosides, and are essential for maintaining mitochondrial dNTP pools for mitochondrial DNA replication. Here the expression of mitochondrial TK2 and dGK in relation to cell growth phases in cultured cells was investigated. TK2 and dGK protein levels in isolated mitochondria and TK2 activity in total cell extracts from U2OS and TK1 deficient L929 cells were determined. We found that TK2 levels were negatively correlated with cell growth rates and there was an exponential increase in TK2 levels in cells entering stationary phase. The expression of dGK did not change and appeared to be constitutive.  相似文献   

12.
《Cell reports》2023,42(7):112768
  1. Download : Download high-res image (255KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
Daunorubicin (DNR) blocks the cell cycle by interfering with synthesis and repair of DNA. In both drug-sensitive 3T3 cells, and drug-resistant 3T3 cells, NIH-MDR-6815, (created by transfection with a human MDR1 cDNA), low concentrations of DNR (up to 80 ng/ml in sensitive cells, 1600 ng/ml in resistant cells), cells initially slowed S-phase progression for 2 to 3 hours, but the treated cells then continued in progression at a steady rate, close to that of untreated cells and accumulated in G2/M. The 2 to 3 h lag period represents the time taken for fully establishing the G2/M block. The time required to bring about cessation of proliferation is the sum of this lag period and the time taken to travel through the cell cycle. This low concentration effect is cytostatic, and fully reversible on washing out the daunorubicin. At higher drug concentrations (above 160 ng/ml in sensitive cells, 3200 ng/ml in resistant cells) the cells became blocked in both G1 and S, and did not reach G2/M. The high concentration effect was cytotoxic and irreversible, and was followed by cell death. Only cells that were in S phase were subject to this block in S, since cells that had accumulated in G2/M by using a low concentration (60 ng/ml DNR for 20 h) were not blocked in S, and did not die, when subsequently treated with high drug concentrations (320 ng/ml, 30 h). The low concentration effect occurred at the same maximal rate (4 %/h) in sensitive or resistant cells, but the external drug concentration required to produce half the maximal rate was, appropriately, twenty-fold higher in the resistant cells (20 ng/ml and 400 ng/ml, respectively).  相似文献   

15.
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

16.
Smad proteins are principal intracellular signaling mediators of transforming growth factor beta (TGF-beta) that regulate a wide range of biological processes. However, the identities of Smad partners mediating TGF-beta signaling are not fully understood. We firstly examined the expression of Smad2 and Smad3 induced by TGF-beta 1 in normal NIH/3T3 cells. The expression of Smad2 and Smad3 was assessed by RT-PCR and Western blotting. The results showed that the expression of Smad2 was increased after treatment with TGF-betaI, but Smad3 was more sensitive to TGF-betaI than Smad2. RNA interference (RNAi) provides a new approach for elucidation of gene function. Use of hairpin siRNA expression vectors for RNAi has provided a rapid and versatile method for assessing gene function in mammalian cells. Here, we have constructed Smad2 and Smad3 hairpin siRNA expression plasmids, and then transfected them into mouse NIH/3T3 cells. Endogenous Smad2 and Smad3 proteins decreased significantly at 48 h after transfection. We found the expression of Smad3 in Smad2-depleted cells was increased, however, the expression of Smad2 in Smad3-depleted cells was not changed. Consistently, the expression of Smad4 mRNA was also attenuated in Smad3-depleted cells. From these data, we suggest that Smad3, but not Smad2, may play a key role in TGF-beta signaling.  相似文献   

17.
18.
葡萄糖-6-磷酸脱氢酶(G6PD)在人皮肤黑色素瘤A375细胞中处于高表达与高活性状态, 但G6PD在黑色素瘤发生发展过程中的作用及其具体机制尚不明确.本文在前期运用 siRNA方法构建G6PD敲减的黑色素瘤A375稳转细胞(A375-G6PDΔ)基础上,构建表达载体pBabe-puro-G6PDWT在A375-G6PDΔ细胞中过表达野生型的G6PD基因,从而构建G6PD表达恢复的稳转细胞(A375-G6PDΔ-G6PDWT).3株细胞A375-WT、A375-G6PDΔ和 A375-G6PDΔ-G6PDWT经G6PD酶活性测定、MTT测定、克隆形成实验、流式细胞仪分析细胞周期和Western 印迹检测.结果显示,A375-G6PDΔ-G6PDWT细胞的G6PD蛋白表达量 (0.847 ± 0.080)及其活性(0.394 ± 0.029)分别是A375-G6PDΔ的3.28倍(P<0.01) 和7.34倍(P<0.01),分别是A375-WT细胞的91-57%和2.12倍(P<0.05).与A375-WT细 胞相比,A375-G6PDΔ细胞G0/G1期细胞数增加,S期细胞数减少,增殖指数PI降低了25-70%(P<0.05),细胞周期蛋白D1/D2、细胞周期蛋白E表达分别下降37.4%、54.3% (P<0.01)和17.3%;而A375-G6PDΔ-G6PDWT细胞呈现G1/S期阻滞解除,细胞周期蛋白D1/D2蛋白分别恢复到A375-WT细胞的89.5%和87.6%,细胞周期蛋白E表达未见 恢复,呈现生长增殖和克隆形成率的恢复并接近于A375-WT细胞. 结果提示,G6PD通 过细胞周期蛋白D1/D2调控人皮肤黑色素瘤A375细胞G1期向S期转换的进程,这为黑色 素瘤发病机制的研究提供了新的思路.  相似文献   

19.
Wang Y  Feng H  Bi C  Zhu L  Pollard JW  Chen B 《FEBS letters》2007,581(16):3069-3075
We report that glycogen synthase kinase (GSK)-3beta is phosphorylated at ser9 and inactivated in uterine epithelial cells from E(2)-treated cyclin D1 null mutant mice. Simultaneous administration of P(4) together with E(2) blocked this effect. Pharmacological inhibition of GSK-3beta activity in mice treated with P(4)E(2) reversed the nuclear exclusion of cyclin D2 in the uterine epithelial cells and this caused phosphorylation of Rb protein and progression of cells towards S-phase. Our results indicate that GSK-3beta is a major target of E(2) and P(4) in regulation of cyclin D2 localization in the mouse uterine epithelium.  相似文献   

20.
旨在探究Ⅲ型纤连蛋白组件包含蛋白5(type Ⅲ domain-containing protein5,FNDC5)对C3H10T1/2细胞成脂分化的调控作用.利用qRT-PCR和Western印迹检测FNDC5在C3H10T1/2细胞成脂分化过程中的时序性表达规律;构建慢病毒包被的过表达/干扰FNDC5载体,转染C3...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号