首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In intact sheep gonadotropes, the protein kinase inhibitor, staurosporine, inhibited the stimulatory effect of phorbol 12-myristate 13-acetate (PMA) on luteinizing hormone (LH) secretion. Under the same conditions staurosporine enhanced gonadotrophin-releasing hormone (GnRH)-stimulated LH exocytosis without altering the EC50 of GnRH and without affecting basal LH exocytosis. These results suggest that PKC does not play a major role in mediating acute GnRH-stimulated LH exocytosis. Furthermore, they demonstrate that staurosporine enhances GnRH stimulus-secretion coupling. Both extracellular Ca2(+)-dependent and Ca2(+)-independent components of GnRH-stimulated LH secretion were enhanced by the drug. Staurosporine had no effect on GnRH stimulation of cAMP and inositol phosphate synthesis. In permeabilized cells staurosporine did not enhance Ca2(+)- and cAMP-stimulated LH exocytosis. Based on these results we hypothesize that staurosporine inhibits a protein kinase which is activated by GnRH and which negatively modulates GnRH stimulus-secretion coupling.  相似文献   

2.
The effects of staurosporine and K-252a, potent inhibitors of protein kinases, and 12-O-tetradecanoylphorbol-13-acetate (TPA) on catecholamine secretion and protein phosphorylation in digitonin-permeabilized bovine adrenal medullary cells were investigated. Staurosporine and K-252a (0.01-10 microM) did not cause large changes in catecholamine secretion evoked by Ca2+ in digitonin-permeabilized cells whereas these compounds strongly prevented TPA-induced enhancement of catecholamine secretion in a concentration-dependent manner. Incubation of digitonin-permeabilized cells with [gamma-32P]ATP resulted in 32Pi incorporation into a large number of proteins, detected as several major bands and darkened background in autoradiograms. Ca2+ and TPA increased phosphorylation of these proteins. Staurosporine and K-252a markedly inhibited Ca(2+)-induced and TPA-induced increases in protein phosphorylation as well as basal (0 Ca2+) protein phosphorylation in digitonin-permeabilized cells. Long term treatment (24 h) of adrenal medullary cells with 1 microM TPA markedly decreased total cellular protein kinase C activity to about 5.3% of control. Pretreatment of the cells with 1 microM TPA strongly inhibited the TPA-induced enhancement of catecholamine secretion whereas it did not cause large changes in total cellular catecholamine amounts, Ca(2+)-induced catecholamine secretion, and cAMP-induced enhancement of catecholamine secretion from digitonin-permeabilized cells. From these results we conclude that protein kinase C plays a modulatory role in catecholamine secretion rather than being essential for initiating catecholamine secretion.  相似文献   

3.
The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion.  相似文献   

4.
The phorbol ester, 4 beta-phorbol 12-myristate acetate (TPA), increased the extent of catecholamine release induced by Ca2+, without affecting the basal release response in digitonin-permeabilized chromaffin cells. This finding is consistent with the hypothesis that protein kinase C has a role to play in stimulus-secretion coupling in the bovine adrenal medullary chromaffin cell.  相似文献   

5.
The effects that active phorbol esters, staurosporine, and changes in actin dynamics, might have on Ca2+ -dependent exocytosis of [3H]-labelled noradrenaline, induced by either membrane-depolarizing agents or a Ca2+ ionophore, have been examined in isolated nerve terminals in vitro. Depolarization-induced openings of voltage-dependent Ca2+ channels with 30 mM KCl or 1 mM 4-aminopyridine induced limited exocytosis of [3H]noradrenaline, presumably from a readily releasable vesicle pool. Application of the Ca2+ ionophore calcimycin (10 microM) induced more extensive [3H]noradrenaline release, presumably from intracellular reserve vesicles. Stimulation of protein kinase C with phorbol 12-myristate,13-acetate increased release evoked by all secretagogues. Staurosporine (1 microM) had no effect on depolarization-induced release, but decreased ionophore-induced release and reversed all effects of the phorbol ester. When release was induced by depolarization, internalization of the actin-destabilizing agent DNAase I into the synaptosomes gave a slight increase in [3H]NA release and strongly increased the potentiating effect of the phorbol ester. In contrast, when release was induced by the Ca2+ ionophore, DNAase I had no effect, either in the absence or presence of phorbol ester. The results indicate that depolarization of noradrenergic rat synaptosomes induces Ca2+ -dependent release from a releasable pool of staurosporine-insensitive vesicles. Activation of protein kinase C increases this release by staurosporine-sensitive mechanisms, and destabilization of the actin cytoskeleton further increases this effect of protein kinase C. In contrast, ionophore-induced noradrenaline release originates from a pool of staurosporine-sensitive vesicles, and although activation of protein kinase C increases release from this pool, DNAase I has no effect and also does not change the effect of protein kinase C. The results support the existence of two functionally distinct pools of secretory vesicles in noradrenergic CNS nerve terminals, which are regulated in distinct ways by protein kinase C and the actin cytoskeleton.  相似文献   

6.
Abstract: Bovine chromaffin cells contain a family of renaturable protein kinases. One of these, a 60,000 Mr kinase (PK60) that phosphorylated myelin basic protein in vitro, was activated fourfold when cells were treated with the protein kinase inhibitor Staurosporine. Because staurosporine inhibits protein kinase C, the role of this kinase in the regulation of PK60 activity was investigated. Fifty nanomolar Staurosporine produced half-maximal inhibition of protein kinase C activity in chromaffin cells, whereas ∼225 n M Staurosporine was required to induce half-maximal activation of PK60. Other protein kinase C inhibitors, H-7 and K-252a, did not mimic the effect of Staurosporine on PK60 activity. Chromaffin cells have three protein kinase C isoforms: α, ε, and ζ. Prolonged treatment with phorbol esters depleted the cells of protein kinase C α and ε, but not ζ. Neither activation nor depletion of protein kinase C affected the basal activity of PK60. Moreover, Staurosporine activated PK60 in cells depleted of protein kinase C α and e; thus, Staurosporine appeared to activate PK60 by a mechanism that does not require these protein kinase C isoforms. Incubation of cell extracts with Staurosporine in vitro did not activate PK60. Incubation of these extracts with adenosine 5'-O-(3-thiotriphosphate), however, caused a twofold activation of PK60. Although this suggests that PK60 activity is regulated by phosphorylation, the mechanism by which Staurosporine activates PK60 is not known. Staurosporine has been reported to promote neurite outgrowth from chromaffin cells. The role of PK60 in mediating the effects of Staurosporine on chromaffin cell function remains to be determined.  相似文献   

7.
Histamine activation of H1 receptors stimulates 3H release from cultured bovine adrenal chromaffin cells preloaded with [3H]noradrenaline. The initial (1-min) release induced by a high concentration of histamine was unaffected by the removal of extracellular Ca2+, whereas the more sustained response (10 min) was largely inhibited. In contrast, release induced by nicotine was dependent on extracellular Ca2+ at all times. The protein kinase inhibitor staurosporine inhibited both the initial and sustained (10-min) phases of histamine-induced release (IC50 in the region of 200 nM) but was ineffective against a direct depolarizing stimulus (56 mM K+). In contrast, the calmodulin antagonist trifluoperazine was equally effective against both stimuli. These data indicate that although a staurosporine-sensitive event (perhaps involving protein kinase C) is essential for coupling histamine receptor activation to the release processes, it is not essential for exocytosis itself. A further distinction between histamine- and depolarization-induced release was demonstrated by the differential effect of the guanine nucleotide-binding protein inhibitor pertussis toxin. Pretreatment with pertussis toxin (0.1 microgram/ml for 16 h) enhanced depolarization-induced release by approximately 1.5-fold. This pertussis toxin pretreatment was, however, approximately twofold as effective in potentiating histamine-evoked release. Thus, the characteristics of the histaminergic response are distinct from those of a depolarizing stimulus, perhaps indicating the involvement of different mechanisms in the release process.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) signal transduction pathways are ubiquitous ineukaryotic cells,which transfer signals from the cell surface to the nucleus,controlling multiple cellularprograms.MAPKs are activated by MAPK kinases [MAP2Ks or MAP/extracellular signal-regulated kinase(ERK) kinases (MEK)],which in turn are activated by MAPK kinase kinases (MAP3Ks).TAO2 is a MAP3Klevel kinase that activates the MAP2Ks MEK3 and MEK6 to activate p38 MAPKs.Because p38 MAPKs arekey regulators of expression of inflammatory cytokines,they appear to be involved in human diseases suchas asthma and autoimmunity.As an upstream activator of p38s,TAO2 represents a potential drug target.Here we report the crystal structure of active TAO2 kinase domain in complex with staurosporine,a broad-range protein kinase inhibitor that inhibits TAO2 with an IC_(50) of 3 μM.The structure reveals that staurosporineoccupies the position where the adenosine of ATP binds in TAO2,and the binding of the inhibitor mimicsmany features of ATP binding.Both polar and nonpolar interactions contribute to the enzyme-inhibitorrecognition.Staurosporine induces conformational changes in TAO2 residues that surround the inhibitormolecule,but causes very limited global changes in the kinase.The structure provides atomic details forTAO2-staurosporine interactions,and explains the relatively low potency of staurosporine against TAO2.The structure presented here should aid in the design of inhibitors specific to TAO2 and related kinases.  相似文献   

9.
Staurosporine potentiates the formation of platelet-activating factor (PAF) and causes a sustained elevation of intracellular Ca2+ ([Ca2+]i). WEB 2086, a specific PAF-receptor antagonist, inhibits both potentiation of PAF formation and elevation of [Ca2+]i by 78% and 65%, respectively. Moreover, the PAF produced by FMLP and/or Staurosporine was completely retained in the cell. This suggests that the effect of staurosporine in FMLP-stimulated neutrophils may be mediated by the action of endogenously produced PAF, which in turn leads to an increase in [Ca2+]i and PAF formation. We conclude that PAF is the major product of human neutrophils which reacts via specific intracellular PAF binding sites to stimulate the phospholipase A2, and its synthesis is under control of a staurosporine-sensitive protein kinase.  相似文献   

10.
Receptor-mediated endocytosis via coated pits is modulated by the activity of protein kinases and protein phosphorylation. We examined the effects of the potent protein kinase inhibitor staurosporine (SSP) on endocytosis of the asialoglycoprotein (ASGP) receptor in HepG2 cells. Staurosporine caused a rapid (<2 min) inhibition of ligand internalization from the cell surface. In contrast the rate of receptor exocytosis from intracellular compartments to the cell surface was not altered (t1/2 = 8 min). This resulted in increased ASGP receptors at the plasma membrane (140% of control) while the total number of receptors per cell was unchanged. Receptor up-regulation was half-maximal at 30 nM SSP. At this concentration staurosporine also inhibited the internalization of iodinated transferrin by HepG2 cells and SK Hep-1 cells, another human hepatoma-derived cell line. Staurosporine was without effect on the non-receptor-mediated uptake of Lucifer yellow by pinocytosis. We investigated the possible involvement of protein kinase C in the inhibitory effects of staurosporine on receptor endocytosis. The active protein kinase C inhibitor H7 did not inhibit ASGP receptor internalization. Furthermore depletion of cellular protein kinase C by overnight incubation with 1 μM phorbol myristate acetate did not abrogate the SSP effect. Together these data suggest that the mechanism of SSP action is independent of the inhibition of protein kinase C. In conclusion staurosporine is a potent and rapid inhibitor of receptor trafficking which is specific for receptor internalization from the plasma membrane.  相似文献   

11.
We investigated the effect of staurosporine on Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) purified from rat brain. (a) Staurosporine (10-100 nM) inhibited the activity of CaM kinase II. The half-maximal and maximal inhibitory concentrations were 20 and 100 nM, respectively. (b) The inhibition with staurosporine was of the noncompetitive type with respect to ATP, calmodulin, and phosphate acceptor (beta-casein). (c) Staurosporine suppressed the auto-phosphorylation of alpha- and beta-subunits of CaM kinase II at concentrations similar to those at which the enzyme activity was inhibited. (d) Staurosporine also attenuated the Ca2+/calmodulin-independent activity of the autophosphorylated CaM kinase II. These results suggest that staurosporine inhibits CaM kinase II by interacting with the catalytic domain, distinct from the ATP-binding site or substrate-binding site, of the enzyme and that staurosporine is an effective inhibitor for CaM kinase II in the cell system.  相似文献   

12.
13.
Predicting off-targets by computational methods is getting increasing importance in early drug discovery stages. We herewith present a computational method based on binding site three-dimensional comparisons, which prompted us to investigate the cross-reaction of protein kinase inhibitors with synapsin I, an ATP-binding protein regulating neurotransmitter release in the synapse. Systematic pair-wise comparison of the staurosporine-binding site of the proto-oncogene Pim-1 kinase with 6,412 druggable protein-ligand binding sites suggested that the ATP-binding site of synapsin I may recognize the pan-kinase inhibitor staurosporine. Biochemical validation of this hypothesis was realized by competition experiments of staurosporine with ATP-γ35S for binding to synapsin I. Staurosporine, as well as three other inhibitors of protein kinases (cdk2, Pim-1 and casein kinase type 2), effectively bound to synapsin I with nanomolar affinities and promoted synapsin-induced F-actin bundling. The selective Pim-1 kinase inhibitor quercetagetin was shown to be the most potent synapsin I binder (IC50  = 0.15 µM), in agreement with the predicted binding site similarities between synapsin I and various protein kinases. Other protein kinase inhibitors (protein kinase A and chk1 inhibitor), kinase inhibitors (diacylglycerolkinase inhibitor) and various other ATP-competitors (DNA topoisomerase II and HSP-90α inhibitors) did not bind to synapsin I, as predicted from a lower similarity of their respective ATP-binding sites to that of synapsin I. The present data suggest that the observed downregulation of neurotransmitter release by some but not all protein kinase inhibitors may also be contributed by a direct binding to synapsin I and phosphorylation-independent perturbation of synapsin I function. More generally, the data also demonstrate that cross-reactivity with various targets may be detected by systematic pair-wise similarity measurement of ligand-annotated binding sites.  相似文献   

14.
In order to obtain further evidence for the involvement of protein kinases in the short-term ACTH-stimulated aldosterone synthesis in rat zona glomerulosa cells, the effects of three different compounds with protein kinase inhibitory properties were investigated. Staurosporine, H-7 and trifluoperazine inhibited ACTH-stimulated aldosterone release in a dose-dependent manner. While the inhibitory effect of H-7 was reversible upon washing of the cells with inhibitor-free medium, the inhibition was maintained in cells treated with staurosporine or trifluoperazine. In contrast to the stimulated production, basal release of aldosterone even at the highest drug concentrations tested was not completely inhibited. We thus conclude that protein kinases may play a crucial role in short-term ACTH-stimulated aldosterone production in rat glomerulosa cells.  相似文献   

15.
The protein kinase C inhibitor staurosporine influenced in different ways the functions of human neutrophils. Staurosporine prevented the enhanced protein phosphorylation in phorbol ester- and N-formylmethyionyl-leucylphenylalanine (fMLP)-stimulated cells, and was a powerful inhibitor of the respiratory burst induced by phorbol myristate acetate [IC50 (concentration causing 50% inhibition) 17 nM] and the chemotactic peptides fMLP and C5a (IC50 24 nM). It did not alter, however, the superoxide production by cell-free preparations of NADPH oxidase. Staurosporine had no effect on agonist-dependent changes in cytosolic free Ca2+ and exocytosis of specific and azurophil granules, and showed only a slight inhibition of the release of vitamin B12-binding protein induced by phorbol myristate acetate (decreased by 40% at 200 nM). On the other hand, staurosporine also exhibited neutrophil-activating properties: it induced the release of gelatinase (from secretory vesicles) and vitamin-B12-binding protein (from specific granules). These effects were protracted, concentration-dependent, insensitive to Ca2+ depletion, and strongly enhanced by cytochalasin B. Staurosporine, however, did not induce the release of beta-glucuronidase or elastase (from azurophil granules). Except for the sensitivity to cytochalasin B, these properties suggest a similarity between the exocytosis-inducing actions of staurosporine and PMA. The results obtained with staurosporine provide further evidence that different signal-transduction processes are involved in neutrophil activation, and suggest that protein phosphorylation is required for the induction of the respiratory burst, but not for exocytosis.  相似文献   

16.
Staurosporine is a microbial anti-fungal alkaloid having a most potent inhibitory activity on protein kinase C and is recently found as a non-12-O-tetradecanoylphorbol-13-acetate (non-TPA)-type tumor promoter of mouse skin, although tumor promotion induced by a TPA-type tumor promoter teleocidin is suppressed by staurosporine. When rat peritoneal macrophages were incubated in the medium containing various concentrations of staurosporine, prostaglandin E2 production and release of radioactivity from [3H]arachidonic acid-labeled macrophages were stimulated at concentrations of 1 and 10 ng/ml. But higher concentrations of staurosporine such as 100 and 1000 ng/ml showed no stimulative effect on prostaglandin E2 production although cytoplasmic free calcium levels were increased in a dose-dependent manner. Staurosporine-induced stimulation of prostaglandin E2 production was inhibited by treatment with cycloheximide, suggesting that a certain protein synthesis is prerequisite for the stimulation of arahcidonic acid metabolism. At higher concentrations (100 and 1000 ng/ml), staurosporine inhibited TPA-type tumor promoter (TPA, teleocidin and aplysiatoxin)-induced stimulation of arachidonic acid metabolism probably due to the inhibition of protein kinases. Tumor promotion activity and anti-tumor promotion activity of staurosporine might be explained by the fact that the lower concentrations of staurosporine stimulate arachidonic acid metabolism and the higher concentrations of staurosporine inhibit the tumor promoter-induced arachidonic acid metabolism, respectively.  相似文献   

17.
The effects of tumour-promoting phorbol esters on protein-phosphorylation reactions and secretion in rat insulinoma tissue were investigated with the objective of assessing the possible role of Ca2+- and phospholipid-dependent protein kinases (protein kinase C) in insulin release. 4 beta-Phorbol 12-myristate 13-acetate (TPA) was a potent secretagogue at concentrations above 0.1 microM. TPA-induced release was inhibited by adrenaline or omission of Ca2+ from the extracellular medium and was augmented by theophylline. These findings suggested that TPA activated an exocytotic process. TPA enhanced the Ca2+- and phospholipid-dependent phosphorylation of histone III-S by a soluble protein fraction of the tissue. Endogenous phosphorylation reactions involving soluble and secretory-granule membrane proteins were also stimulated by TPA in tissue homogenates and reconstituted subcellular fractions. Histone phosphorylation and the granule-protein phosphorylation reactions showed similar concentration-dependencies for activation by both Ca2+ and TPA, thus indicating that the same enzyme was involved. It is concluded that the phosphorylation of cytosolic and membrane protein substrates by protein kinase C may be important in the stimulus-secretion coupling mechanism of insulin release.  相似文献   

18.
We examined the effect of phorbol 12-myristate 13-acetate (PMA) on release of arachidonic acid (AA) and its metabolites in osteoblastic cells in an attempt to study mechanism of the regulation of phospholipase A2 (PLA2) activity. In the MOB 3-4-F2 cell line, a subclone of the clonal osteoblastic MOB 3-4 cell line, PMA (0.1-100 nM) changed its appearance and increased AA release in a dose- and time-dependent manner, whereas 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD) did not show a significant affect on the release. The addition of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, greater than or equal to 1.5 mM), a Ca2+ chelator, almost completely inhibited the PMA-induced AA release without affecting the intrinsic AA release. Preincubation with staurosporine (5-20 nM), an inhibitor of protein kinase C (PKC), partially (approximately 60%) blocked the AA release. However, 30-min preincubation with H-7 (50-200 microM), an inhibitor of PKC, failed to block the AA release. PMA, thus, appeared to stimulate AA release partially by a staurosporine-sensitive mechanism, probably an activation of PKC, in an external Ca(2+)-dependent manner. On the other hand, MOB 3-4 cells responded to PMA with an increased AA release but not with a drastic change of its shape. Both staurosporine and BAPTA exerted similar inhibitory effects. Prolonged exposure (48 h) to PMA (0.1-10 nM) enhanced DNA synthesis of MOB 3-4-F2 cells, but not MOB 3-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Regulation of atrial release of atrial natriuretic peptide (ANP) is coupled to changes in atrial dynamics. However, the mechanism by which mechanical stretch controls myocytic ANP release must be defined. The purpose of this study was to define the mechanism by which cAMP controls myocytic ANP release in perfused, beating rabbit atria. The cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX) inhibited myocytic ANP release. The activation of adenylyl cyclase with forskolin inhibited ANP release, which was a function of an increase in cAMP production. Inhibitors for L-type Ca(2+) channels and protein kinase A (PKA) attenuated a minor portion of the forskolin-induced inhibition of ANP release. G?-6976 and KN-62, which are specific inhibitors for protein kinase C-alpha and Ca(2+)/calmodulin kinase, respectively, failed to modulate forskolin-induced inhibition of ANP release. The nonspecific protein kinase inhibitor staurosporine blocked forskolin-induced inhibition of ANP release in a dose-dependent manner. Staurosporine but not nifedipine shifted the relationship between cAMP and ANP release. Inhibitors for L-type Ca(2+) channels and PKA and staurosporine blocked forskolin-induced accentuation of atrial dynamics. These results suggest that cAMP inhibits atrial myocytic release of ANP via protein kinase-dependent and L-type Ca(2+)-channel-dependent and -independent signaling pathways.  相似文献   

20.
Staurosporine, a microbial alkaloid, enhances inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG) production rapidly and dose-dependently in fMet-Leu-Phe (FMLP)-stimulated human neutrophils showing maximal effects at 1 microM concentration. The IP3 increase was specific for staurosporine as three other putative protein kinase C (PKC) inhibitors, H7, sphingosine and palmitoylcarnitine were unable to enhance the IP3 generation in FMLP-stimulated human neutrophils. Staurosporine, at concentrations 0.3-1.0 microM, did not affect the initial mobilization of FMLP-induced intracellular Ca2+ (Ca2+i), although a sustained elevation of cytosolic Ca2+ level was observed within 5 min. This effect could not be suppressed, even by 1 microM phorbol-myristate 12,13-acetate (PMA). Whereas lower concentrations of staurosporine (less than or equal to 100 nM) were unable to affect FMLP-induced IP3 production, DG accumulation and Ca2+i, the PMA-inhibited initial Ca2+i signal and IP3 formation triggered by FMLP were almost completely restored. At higher concentrations (greater than or equal to 300 nM) staurosporine reversed the inhibitory effect of other protein kinases, distinct from the PMA-inducible one, which may be responsible for the phosphatidyl inositol 4,5-bisphosphate (PIP2) breakdown, thus causing accumulation of IP3 and DG and an elevation of C2+i level. Whereas IP3 declined to basal level within 5 min, the DG level remained elevated during the same period. This phenomenon is attributed to phospholipase D (PLD) stimulation by staurosporine, which augments the DG synthesis, in part through PA degradation via phosphatidic acid (PA) phosphohydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号