首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

Cerebellar Purkinje neurons of long‐sleep (LS) mice express a higher sensitivity than do those of short‐sleep (SS) mice to the depressant effects of ethanol in situ, in vitro, and in intraocular cerebellar brain grafts. The ethanol sensitivity of Purkinje neurons is intrinsic to the cerebellum, may be associated with only certain brain areas, and shows a high genetic correlation with the behavioral sensitivity of mice to ethanol‐induced ataxia. Tolerance develops to the depressant effects of ethanol on cerebellar neurons in both lines of mice. However, ethanol‐tolerant LS mice are more sensitive to the electrophysiological effects of ethanol on Purkinje neurons than are ethanol‐tolerant SS mice. In addition, the behavioral sensitivity to this drug probably also involves noncerebellar neurons since neonatally cerebellectomized LS and SS mice retain a different sensitivity to the ataxic effects of ethanol.  相似文献   

3.
4.
The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs.  相似文献   

5.
6.
7.
Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders.  相似文献   

8.
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.  相似文献   

9.
《Fly》2013,7(3):191-199
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.  相似文献   

10.
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.  相似文献   

11.
Although low doses of systemic ethanol stimulate locomotion in mice, in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of motor activity. In the present study, male rats received acute doses of ethanol IP (0.0, 0.25, 0.5, 1.0 or 2.0 g/kg) and were tested on several behavioral tasks related to the motor suppressive or sedative effects of the drug. This research design allowed for comparisons between the effects of ethanol on different behavioral tasks in order to determine which tasks were most sensitive to the drug (i.e., which tasks would yield deficits that appear at lower doses). In the first two experiments, rats were evaluated on a sedation rating scale, and ataxia/motor incoordination was assessed using the rotarod apparatus. Administration of 2.0 g/kg ethanol produced sedation as measured by the sedation scale, and also impaired performance on the rotarod. In a third experiment, ethanol reduced locomotion in the stabilimeter at several doses and times after IP injection, with 0.25 g/kg being the lowest dose that produced a significant decrease in locomotion. Finally, experiment four studied the effects of ethanol on operant lever pressing reinforced on a fixed ratio 5 (FR5) schedule for food reinforcement. Data showed suppressive effects on lever pressing at doses of 1.0, and 2.0 g/kg ethanol. Analysis of the interresponse time distribution showed that ethanol produced a modest slowing of operant responding, as well as fragmentation of the temporal pattern of responding and increases in pausing. Taken together, these results indicate that rats can demonstrate reduced locomotion and slowing of operant responding at doses lower than those that result in sedation or ataxia as measured by the rotarod. The detection of subtle changes in different motor test across a broad range of ethanol doses is important for understanding ethanol effects in other cognitive, motivational or sensory processes.  相似文献   

12.
Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila’s sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors.  相似文献   

13.
A reduced sensitivity to the sedating effects of alcohol is a characteristic associated with alcohol use disorders (AUDs). A genetic screen for ethanol sedation mutants in Drosophila identified arouser (aru), which functions in developing neurons to reduce ethanol sensitivity. Genetic evidence suggests that aru regulates ethanol sensitivity through its activation by Egfr/Erk signaling and its inhibition by PI3K/Akt signaling. The aru mutant also has an increased number of synaptic terminals in the larva and adult fly. Both the increased ethanol sensitivity and synapse number of the aru mutant are restored upon adult social isolation, suggesting a causal relationship between synapse number and ethanol sensitivity. We thus show that a developmental abnormality affecting synapse number and ethanol sensitivity is not permanent and can be reversed by manipulating the environment of the adult fly.  相似文献   

14.
Axonal degeneration is a hallmark of many neuropathies, neurodegenerative diseases, and injuries. Here, using a Drosophila injury model, we have identified a highly conserved E3 ubiquitin ligase, Highwire (Hiw), as an important regulator of axonal and synaptic degeneration. Mutations in hiw strongly inhibit Wallerian degeneration in multiple neuron types and developmental stages. This new phenotype is mediated by a new downstream target of Hiw: the NAD+ biosynthetic enzyme nicotinamide mononucleotide adenyltransferase (Nmnat), which acts in parallel to a previously known target of Hiw, the Wallenda dileucine zipper kinase (Wnd/DLK) MAPKKK. Hiw promotes a rapid disappearance of Nmnat protein in the distal stump after injury. An increased level of Nmnat protein in hiw mutants is both required and sufficient to inhibit degeneration. Ectopically expressed mouse Nmnat2 is also subject to regulation by Hiw in distal axons and synapses. These findings implicate an important role for endogenous Nmnat and its regulation, via a conserved mechanism, in the initiation of axonal degeneration. Through independent regulation of Wnd/DLK, whose function is required for proximal axons to regenerate, Hiw plays a central role in coordinating both regenerative and degenerative responses to axonal injury.  相似文献   

15.
Alcohol induces degeneration of neurons and inhibits neurogenesis in the brain. Small heat shock proteins are able to protect neurons in cerebral ischemia and oxidative stress. In this study, we investigated the neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic ethanol administrations using transgenic mice overexpressing the human Hsp27 protein. Transgenic mice and wild-type littermates were injected with 2 g/kg ethanol intraperitoneally, and then motor coordination and muscle strength were analyzed using different behavioral tests, such as footprint analysis, balance beam, and inverted screen tests. Ethanol-injected transgenic mice showed similar footprints to control saline-injected mice, did not fall of the beam, and were able to climb to the top of the inverted screen, while wild-type mice showed ataxia and incoordination after ethanol injection. The effect of Hsp27 on chronic ethanol consumption was also investigated. Drinking water of mice was replaced by a 20% ethanol solution for 5 weeks, and then brain sections were stained with Fluoro Jade C staining. We found significantly lesser amount of degenerating neurons in the brain of ethanol-drinking transgenic mice compared to wild-type mice. We conclude that Hsp27 can protect neurons against the acute and chronic toxic effects of ethanol.  相似文献   

16.
17.
In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ) has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC50 = 19.8 mM) being more sensitive than its mammalian ortholog (IC50 = 42.1 mM). This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.  相似文献   

18.
BACKGROUND: Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol's effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS: Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was used to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS: Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8, or Shh mRNA overexpression rescues ethanol‐induced decreases in GAD1 and Atonal1a gene expression. CONCLUSIONS: These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
Abstract: The ability of ethanol to enhance GABAA receptor function remains controversial; conflicting observations have been made even in the same brain region, and when using apparently similar methodologies. In this study we characterized a single protocol variable, the initial incubation temperature of brain slices, that had dramatic effects on the ethanol sensitivity of GABAA inhibitory postsynaptic currents (IPSCs) recorded from rat hippocampal CA1 pyramidal neurons. Incubation of hippocampal slices at relatively low temperatures (11–15°C) immediately after slice preparation significantly affected a number of physiological and biochemical parameters. Such slices showed a decrease in extracellular inhibitory postsynaptic potential amplitude, a significant increase in the ethanol sensitivity of GABAA IPSCs in CA1 pyramidal neurons, no change in pentobarbital or flunitrazepam potentiation of IPSCs, and an increase in basal protein kinase C (PKC) activity relative to slices incubated at 31–33°C. In addition, the increase in ethanol sensitivity of GABAA IPSCs was blocked by chelerythrine, a selective inhibitor of PKC. These results suggest that differences in hippocampal slice incubation protocols may have contributed to the disparate results of previous investigations of ethanol modulation of GABAA receptor-mediated synaptic transmission in the rat hippocampus. In addition, these findings provide further evidence that PKC activity positively modulates the interaction between ethanol and GABAA receptors in the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号