首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Green synthesis of nanoparticles using various plant materials opens a new scope for the phytochemist and discourages the use of toxic chemicals. In this article, we report an eco-friendly and low-cost method for the synthesis of silver nanoparticles (AgNPs) using Andean blackberry fruit extracts as both a reducing and capping agent. The green synthesized AgNPs were characterized by various analytical instruments like UV–visible, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The formation of AgNPs was analyzed by UV–vis spectroscopy at λmax = 435 nm. TEM analysis of AgNPs showed the formation of a crystalline, spherical shape and 12–50 nm size, whereas XRD peaks at 38.04°, 44.06°, 64.34° and 77.17° confirmed the crystalline nature of AgNPs. FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. Furthermore, it was found that the AgNPs showed good antioxidant efficacy (>78%, 0.1 mM) against 1,1-diphenyl-2-picrylhydrazyl. The process of synthesis is environmentally compatible and the synthesized AgNPs could be a promising candidate for many biomedical applications.  相似文献   

2.
In the present study, we synthesized silver and gold nanoparticles with a particle size of 10–20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436–531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150–180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM–EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10–20 nm) and AuNPs (5–20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens.  相似文献   

3.
Biosynthesis of gold nanoparticles with small size and biostability is very important and used in various biomedical applications. There are lot of reports for the synthesis of gold nanoparticles by the addition of reducing agent and stabilizing agent. In the present study we have synthesized gold nanoparticles, with a particle size ranging from 5 to 15 nm, using Zingiber officinale extract which acts both as reducing and stabilizing agent. Z. officinale extract is reported to be a more potent anti-platelet agent than aspirin. Therefore, green synthesis of gold nanoparticles with Z. officinale extract, as an alternative to chemical synthesis, is beneficial from its biological and medical applications point of view, because of its good blood biocompatibility and physiological stability. The formation and size distribution of gold nanoparticles were confirmed by dynamic light scattering (DLS), UV–vis spectrophotometer and transmission electron microscopy (TEM). Gold nanoparticles synthesized using citrate and Z. officinale extract demonstrated very low protein adsorption. Both nanoparticles were non platelet activating and non complement activating on contact with whole human blood. They also did not aggregate other blood cells, however, nanoparticles synthesised with Z. officinale extract was highly stable at physiological condition compared to citrate capped nanoparticles, which aggregated. Thus the usage of nanoparticles, synthesized with Z. officinale extract, as vectors for the applications in drug delivery, gene delivery or as biosensors, where a direct contact with blood occurs is justified.  相似文献   

4.
The synthesis of Zinc oxide nanoparticles using a plant-mediated approach is presented in this paper. The nanoparticles were successfully synthesized using the Nitrate derivative of Zinc and plant extract of the indigenous medicinal plant Cayratia pedata. 0.1 mM of Zn (NO3)2.6H2O was made to react with the plant extract at different concentrations, and the reaction temperature was maintained at 55 °C, 65 °C, and 75 °C. The yellow coloured paste obtained was wholly dried, collected, and packed for further analysis. In the UV visible spectrometer (UV–Vis) absorption peak was observed at 320 nm, which is specific for Zinc oxide nanoparticles. The characterization carried out using Field Emission Scanning Electron Microscope (FESEM) reveals the presence of Zinc oxide nanoparticles in its agglomerated form. From the X-ray diffraction (XRD) pattern, the average size of the nanoparticles was estimated to be 52.24 nm. Energy Dispersive Spectrum (EDX) results show the composition of Zinc and Oxygen, giving strong energy signals of 78.32% and 12.78% for Zinc and Oxygen, respectively. Fourier Transform - Infra-Red (FT-IR) spectroscopic analysis shows absorption peak of Zn–O bonding between 400 and 600 cm?1. The various characterization methods carried out confirm the formation of nano Zinc oxide. The synthesized nanoparticles were used in the immobilization of the enzyme Glucose oxidase. Relative activity of 60% was obtained when Glucose oxidase was immobilized with the green synthesized ZnO nanoparticles. A comparative study of the green synthesized with native ZnO was also carried out. This green method of synthesis was found to be cost-effective and eco-friendly.  相似文献   

5.
The ethanolic extracts, various fractions and two pure compounds isolated from the plant N. arbortris were tested against Encephalomyocarditis Virus (EMCV) and Semliki Forest Virus (SFV). Pronounced in vitro virus inhibitory activity was observed with the ethanolic and n-butanol fractions as well as with the pure compounds arbortristoside A and arbortristoside C. In addition, ethanolic extracts and n-butanol fraction protected EMCV infected mice to the extent of 40 and 60% respectively against SFV at a daily dose of 125 mg/kg body weight.  相似文献   

6.
7.
Zinc oxide (ZnO) has broad applications in various areas. Nanoparticle synthesis using plants is an alternative to conventional physical and chemical methods. It is known that the biological synthesis of nanoparticles is gaining importance due to its simplicity, eco-friendliness and extensive antimicrobial activity. Also, in this study we report the synthesis of ZnO nanoparticles using Trifolium pratense flower extract. The prepared ZnO nanoparticles have been characterized by UV–Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) with Energy dispersive X-ray analysis (EDX). Besides, this study determines the antimicrobial efficacy of the synthesized ZnO nanoparticles against clinical and standard strains of S. aureus and P. aeruginosa and standard strain of E. coli.  相似文献   

8.
The application of green-synthesis principles is one of the most impressive research fields for the production of nanoparticles. Different kinds of biological systems have been used for this purpose. In the present study, AuNPs (gold nanoparticles) were prepared within a short time period using a fresh cell extract of the marine microalga Tetraselmis suecica as a reducing agent of HAuCl4 (chloroauric acid) solution. The UV-visible spectrum of the aqueous medium containing AuNPs indicated a peak at 530 nm, corresponding to the surface plasmon absorbance of AuNPs. The X-ray diffraction pattern also showed a Bragg reflection related to AuNPs. Fourier-transform infrared spectroscopy was performed for analysis of surface functional groups of AuNPs. Transmission electron microscopy and particle-size-distribution patterns determined by the laser-light-scattering method confirmed the formation of well-dispersed AuNPs. The most frequent size of particles was 79 nm.  相似文献   

9.
The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach. In this study, silver nanoparticles were successfully synthesized from AgNO3 by reduction of aqueous Ag+ ions with the cell filtrate of Rhodobacter sphaeroides. Nanoparticles were characterized by means of UV–vis absorption spectroscopy, X-Ray Diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (111), (200), (220) and (311) planes, bright circular spots in the selected are a electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. Also, the size of silver nanoparticles was controlled by the specific activity of nitrate reductase in the cell filtrate.  相似文献   

10.
Chitosan-N-2-methylhydroxypyridine-6-methylcorboxylate (Ch-PDC) and chitosan-N-2-methylhydroxypyridine-6-methylhydroxy thiocarbohydrazide (Ch-PDC-Th) were synthesized for the first time using chitosan as precursor. Chitosan, Ch-PDC, Ch-PDC-Th were used in the synthesis of gold nanoparticles (AuNP) in aqueous medium. Chitosan and Ch-PDC-Th possess reducing properties which enabled the 'green' synthesis of AuNPs. The stabilization of the AuNPs was as a result of the thiocarbide (SC) and amine (NH(2)) groups in the chitosan matrix. The modified chitosan, its derivatives and the resulting AuNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, Raman scattering measurements, powder X-ray diffraction (PXRD) and thermo gravimetric analysis (TGA). Particle size, morphology, segregation and individuality of the AuNPs were examined by transmission electron microscope (TEM) and energy dispersion spectroscopy (EDS). An average AuNPs size of 20 nm was observed for chitosan and Ch-PDC-Th while Ch-PDC was 50 nm. In comparison, AuNPs resulting from Ch-PDC-Th precursor has the most enhanced Raman and fluorescent intensities and was stable for over 2 months.  相似文献   

11.
He S  Zhang Y  Guo Z  Gu N 《Biotechnology progress》2008,24(2):476-480
An environmentally friendly method using a cell-free extract (CFE) of Rhodopseudomonas capsulata is proposed to synthesize gold nanowires with a network structure. This procedure offers control over the shapes of gold nanoparticles with the change of HAuCl4 concentration. The CFE solutions were added with different concentrations of HAuCl4, resulting in the bioreduction of gold ions and biosynthesis of morphologies of gold nanostructures. It is probable that proteins acted as the major biomolecules involved in the bioreduction and synthesis of gold nanoparticles. At a lower concentration of gold ions, exclusively spherical gold nanoparticles with sizes ranging from 10 to 20 nm were produced, whereas gold nanowires with a network structure formed at the higher concentration of gold ions in the aqueous solution. This method is expected to be applicable to the synthesis of other metallic nanowires such as silver and platinum, and even other anisotropic metal nanostructures are expected using the biosynthetic methods.  相似文献   

12.
Biogenic gold nanotriangles and spherical silver nanoparticles were synthesized by a simple procedure using Aloe vera leaf extract as the reducing agent. This procedure offers control over the size of the gold nanotriangle and thereby a handle to tune their optical properties, particularly the position of the longitudinal surface plasmon resonance. The kinetics of gold nanotriangle formation was followed by UV-vis-NIR absorption spectroscopy and transmission electron microscopy (TEM). The effect of reducing agent concentration in the reaction mixture on the yield and size of the gold nanotriangles was studied using transmission electron microscopy. Monitoring the formation of gold nanotriangles as a function of time using TEM reveals that multiply twinned particles (MTPs) play an important role in the formation of gold nanotriangles. It is observed that the slow rate of the reaction along with the shape directing effect of the constituents of the extract are responsible for the formation of single crystalline gold nanotriangles. Reduction of silver ions by Aloe vera extract however, led to the formation of spherical silver nanoparticles of 15.2 nm +/- 4.2 nm size.  相似文献   

13.
The leaf extract of Diopyros kaki was used as a reducing agent in the ecofriendly extracellular synthesis of platinum nanoparticles from an aqueous H2PtCl6·6H2O solution. A greater than 90% conversion of platinum ions to nanoparticles was achieved with a reaction temperature of 95°C and a leaf broth concentration of >10%. A variety of methods was used to characterize the platinum nanoparticles synthesized: inductively coupled plasma spectrometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The average particle size ranged from 2 to 12 nm depending on the reaction temperature and concentrations of the leaf broth and PtCl6 2−. FTIR analysis suggests that platinum nanoparticle synthesis using Diopyros kaki is not an enzyme-mediated process. This is the first report of platinum nanoparticle synthesis using a plant extract.  相似文献   

14.
Journal of Plant Biochemistry and Biotechnology - The present study reports the optimization of various parameters for green synthesis of silver nanoparticles using aqueous leaf extract of Ocimum...  相似文献   

15.
Bisphosphonates improve orthodontic anchorage. More targeted action of this drug can be achieved through its conjugation with gold nanoparticles. Asparagus racemosus is a green edible medicinal plant used in Ayurvedic preparations to treat aging, vigor, immunity, longevity, and skeletal issues. Therefore, it is of interest to report the green synthesized Bisphosphonate conjugated gold nanoparticles with Asparagus racemosus extract and to characterize them.  相似文献   

16.
17.
The present study aimed to explore the anticancer potentials of the gold nanoparticles (NPs) obtained by green synthesis method using an endophytic strain Fusarium solani ATLOY – 8 has been isolated from the plant Chonemorpha fragrans. The formation of the NPs was analyzed by UV, FTIR, SEM and XRD. The synthesized NPs showed pink-ruby red colors and high peak plasmon band was observed between 510 and 560 nm. It is observed that intensity of absorption steadily increases the wavelength and band stabilizes at 551 nm. The XRD pattern revealed the angles at 19, 38.32, 46.16, 57.50, and 76.81° respectively. Interestingly, the FTIR band absorption noted at 1413 cm−1, 1041 cm−1 and 690 cm−1 ascribed the presence of amine II bands of protein, C-N and C-H stretching vibrations of the nanoparticles. SEM analysis indicated that the average diameter of the synthesized nanoparticles was between 40 and 45 nm. These NPs showed cytotoxicity on cervical cancer cells (He La) and against human breast cancer cells (MCF-7) and the NPs exhibited dose dependent cytotoxic effect. IC50 value was 0.8 ± 0.5 μg/mL on MCF-7 cell line and was found to be 1.3 ± 0.5 μg/mL on MCF-7 cell lines. The synthesized NPs induced apoptosis on these cancer cell lines. The accumulation of apoptotic cells decreased in sub G0 and G1 phase of cell cycle in the MCF-7 cancer cells were found to be 55.13%, 52.11% and 51.10% after 12 h exposure to different concentrations. The results altogether provide an apparent and versatile biomedical application for safer chemotherapeutic agent with little systemic toxicity.  相似文献   

18.
The present study focused on the evaluation of antibacterial property of silver nanoparticles (AgNPs) synthesized using mango flower extract. The morphology of the synthesized AgNPs was observed under transmission electron microscopy and the particles have shown spherical shape in the range of 10–20 nm. X-ray powder diffraction analysis confirmed the crystalline nature of the AgNPs. The atomic percentage of the Ag element in the nanoparticles was about 7.58% which is greater than the other elements present in the sample. The AgNPs showed extensive lethal effect on both Gram-positive (Staphylococcus sp.) and Gram-negative (Klebsiella sp., Pantoea agglomerans, and Rahnella sp.) bacteria. The extensive lethal effect of AgNPs against clinically important pathogens demonstrated that the mango flower mediated AgNPs could be applied as potential antibacterial agent to control the bacterial population in the respective industries.  相似文献   

19.
Green synthesis of nanoparticles is an important area in the field of nanotechnology, which has cost effective and environment friendly benefit over physical and chemical methods. The present study aims at preparation of silver nanoparticles through green route using leaves of Ocimum canum Sims, a widely distributed medicinal herb. The synthesized silver nanoparticles were characterized by SEM and XRD. The spherical and rod like morphological shapes were proven by SEM techniques. Crystallographic structure was confirmed by XRD and average particle size of synthesized silver nanoparticles was calculated which was found to be of 15.72 nm. The antibacterial activity of these prepared silver nanoparticles against pathogenic bacterium Escherichia coli (E. coli) has shown the highest ZOI of 2.45 cm at 30 ppm.  相似文献   

20.
The aqueous cashew leaves extract obtained was investigated for the preparation of gold nanoparticle (AuNPs). The obtained AuNPs were characterized by UV–Visible spectroscopy, FTIR and XRD analysis. Results indicated that the green synthesized AuNPs showed good antibacterial effect against Escherichia coli and Bacillus subtilis and exhibited 74.47% viability on PBMC and 23.56% viability on MCF-7 cell lines at a maximum concentration of 100?µg/ml. Therefore, future studies on antibacterial application in food packing, wound dressing and antihelmintic applications will be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号