首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants.  相似文献   

3.
Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.  相似文献   

4.
Qi Y  Wang H  Zou Y  Liu C  Liu Y  Wang Y  Zhang W 《FEBS letters》2011,(1):231-239
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H2O2-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψm) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψm relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψm and inhibiting the amplification of ROS.  相似文献   

5.
Gao C  Xing D  Li L  Zhang L 《Planta》2008,227(4):755-767
Recent studies have suggested that ultraviolet-C (UV-C) overexposure induces programmed cell death (PCD) in Arabidopsis thaliana (L.) Heynh, and this process includes participation of caspase-like proteases, DNA laddering as well as fragmentation of the nucleus. To investigate possible early signal events, we used microscopic observations to monitor in vivo the behaviour of mitochondria, as well as the production and localization of reactive oxygen species (ROS) during protoplast PCD induced by UV-C. A quick burst of ROS was detected when the protoplasts were kept in continuous light after UV-C exposure, which was restricted in chloroplasts and the adjacent mitochondria. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) or 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU, an inhibitor of photosynthetic electron transport) decreased the ROS production and partially protected protoplasts from PCD. A mitochondrial transmembrane potential (MTP) loss occurred prior to cell death; thereafter, the mitochondria irregularly clumped around chloroplasts or aggregated in other places within the cytoplasm, and the movement of mitochondria was concomitantly blocked. Pre-treatment with an inhibitor of mitochondrial permeability transition pores (MPTP), cyclosporine (CsA), effectively retarded the decrease of MTP and reduced the percentage of protoplasts undergoing PCD after UV-C overexposure. Our results suggest that the MTP loss and the changes in distribution and mobility of mitochondria, as well as the production of ROS play important roles during UV-induced plant PCD, which is in good accordance with what has been reported in many types of apoptotic cell death, both in animals and plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Serum deprivation-triggered increases in reactive oxygen species (ROS) are known to induce apoptotic cell death. However, the mechanism by which serum deprivation causes ROS production is not known. Since mitochondria are the main source of ROS and since mitochondrial ROS modulator 1 (Romo1) is involved in ROS production, we sought to determine if serum deprivation triggered ROS production through Romo1. To examine the relationship between Romo1 and the serum deprivation-triggered increase in ROS, we transfected Romo1 siRNA into various cell lines and looked for inhibition of mitochondrial ROS generation. Romo1 knockdown by Romo1 siRNA blocked the mitochondrial ROS production caused by serum deprivation, which originates in the mitochondrial electron transport chain. We also found that Romo1 knockdown inhibited serum deprivation-induced apoptosis. These findings suggest that Romo1-derived ROS play an important role in apoptotic cell death triggered by withdrawal of cell survival factors.  相似文献   

7.
Luo  Lilan  He  Yajun  Zhao  Yannan  Xu  Qian  Wu  Jian  Ma  Haiyan  Guo  Hongyan  Bai  Lin  Zuo  Jianru  Zhou  Jian-Min  Yu  Hong  Li  Jiayang 《中国科学:生命科学英文版》2019,62(8):991-1002
Reactive oxygen species(ROS) play a crucial role in numerous biological processes in plants, including development, responses to environmental stimuli, and programmed cell death(PCD). Deficiency in MOSAIC DEATH 1(MOD1), a plastid-localized enoyl-ACP reductase essential for de novo fatty acid biosynthesis in Arabidopsis thaliana, leads to the increased malate export from chloroplasts to mitochondria, and the subsequent accumulation of mitochondria-generated ROS and PCD. In this study, we report the identification and characterization of a mod1 suppressor, som592. SOM592 encodes mitochondrion-localized NAD~+ transporter 2(NDT2). We show that the mitochondrial NAD pool is elevated in the mod1 mutant. The som592 mutation fully suppressed mitochondrial NADH hyper-accumulation, ROS production, and PCD in the mod1 mutant, indicating a causal relationship between mitochondrial NAD accumulation and ROS/PCD phenotypes. We also show that in wild-type plants, the mitochondrial NAD+uptake is involved in the regulation of ROS production in response to continuous photoperiod. Elevation of the alternative respiration pathway can suppress ROS accumulation and PCD in mod1, but leads to growth restriction. These findings uncover a regulatory mechanism for mitochondrial ROS production via NADH homeostasis in Arabidopsis thaliana that is likely important for growth regulation in response to altered photoperiod.  相似文献   

8.
Salicylic acid (SA) is implicated in the induction of programmed cell death (PCD) associated with pathogen defense responses because SA levels increase in response to PCD-inducing infections, and PCD development can be inhibited by expression of salicylate hydroxylase encoded by the bacterial nahG gene. The acd11 mutant of Arabidopsis (Arabidopsis thaliana L. Heynh.) activates PCD and defense responses that are fully suppressed by nahG. To further study the role of SA in PCD induction, we compared phenotypes of acd11/nahG with those of acd11/eds5-1 and acd11/sid2-2 mutants deficient in a putative transporter and isochorismate synthase required for SA biosynthesis. We show that sid2-2 fully suppresses SA accumulation and cell death in acd11, although growth inhibition and premature leaf chlorosis still occur. In addition, application of exogenous SA to acd11/sid2-2 is insufficient to restore cell death. This indicates that isochorismate-derived compounds other than SA are required for induction of PCD in acd11 and that some acd11 phenotypes require NahG-degradable compounds not synthesized via isochorismate.  相似文献   

9.
In this study, we have characterized the cellular source and mechanism for the enhanced generation of reactive oxygen species (ROS) in the myocardium during Trypanosoma cruzi infection. Cardiac mitochondria of infected mice, as compared to normal controls, exhibited 63.3% and 30.8% increase in ROS-specific fluorescence of dihydroethidium (detects O2 •−) and amplex red (detects H2O2), respectively. This increase in ROS level in cardiac mitochondria of infected mice was associated with a 59% and 114% increase in the rate of glutamate/malate- (complex I substrates) and succinate- (complex II substrate) supported ROS release, respectively, and up to a 74.9% increase in the rate of electron leakage from the respiratory chain when compared to normal controls. Inhibition studies with normal cardiac mitochondria showed that rotenone induced ROS generation at the QNf-ubisemiquinone site in complex I. In complex III, myxothiazol induced ROS generation from a site located at the Qo center that was different from the Qi center of O2 •− generation by antimycin. In cardiac mitochondria of infected mice, the rate of electron leakage at complex I during forward (complex I-to-complex III) and reverse (complex II-to-complex I) electron flow was not enhanced, and complex I was not the main site of increased ROS production in infected myocardium. Instead, defects of complex III proximal to the Qo site resulted in enhanced electron leakage and ROS formation in cardiac mitochondria of infected mice. Treatment of infected mice with phenyl-α-tert-butyl-nitrone (PBN) improved the respiratory chain function, and, subsequently, decreased the extent of electron leakage and ROS release. In conclusion, we show that impairment of the Qo site of complex III resulted in increased electron leakage and O2 •− formation in infected myocardium, and was controlled by PBN.  相似文献   

10.
Mitochondria, the main source of reactive oxygen species (ROS), are required for cell survival; yet also orchestrate programmed cell death (PCD), referring to apoptosis and autophagy. Autophagy is an evolutionarily conserved lysosomal degradation process implicated in a wide range of pathological processes, most notably cancer. Accumulating evidence has recently revealed that mitochondria may generate massive ROS that play the essential role for autophagy regulation, and thus sealing the fate of cancer cell. In this review, we summarize mitochondrial function and ROS generation, and also highlight ROS-modulated core autophagic pathways involved in ATG4–ATG8/LC3, Beclin-1, p53, PTEN, PI3K–Akt–mTOR and MAPK signaling in cancer. Therefore, a better understanding of the intricate relationships between mitochondrial ROS and autophagy may ultimately allow cancer biologists to harness mitochondrial ROS-mediated autophagic pathways for cancer drug discovery.  相似文献   

11.
Systemic PCD occurs in TMV-tomato interaction   总被引:1,自引:0,他引:1  
In hypersensitive response (HR), programmed cell death (PCD) is reported as a powerful defense mechanism in plant immune responses to pathogen. However, little is known about the PCD in systemic acquired resistance (SAR). Using tobacco mosaic virus (TMV) to infect the tomato (Lycopersicon esculentum cv. Jiafen 16) we found that localized TMV-infection could induce cell death in the uninoculated parts of the tomatoes, where the enzyme-linked immunosorbent assay (ELISA) showed no spreading virus. The biological and molecular characterization of this cell death was shown as following: chromatin condensed and formed peripheral conglomeration in nuclei; cell nucleus were TUNEL positive labeled; genomic DNA was fragmented and showed DNA laddering; mitochondria and chloroplast were disrupted; tonoplast and plasma membrane were shrunk and degradated. These results suggested that with an absence of TMV spread, the local TMV-infection on certain tomato leaves could induce systemic PCD in the root-tips, stem-apices and uninoculated leaves. The systemic PCD has various initiation and synchronization in such tissues and is distinct in inducement and exhibition from HR-PCD and SAR.  相似文献   

12.
Soybean cell cultures (cv. Williams 82) respond to Pseudomonas syringae bacteria expressing the avirulence gene AvrA with a hypersensitive reaction, a programmed cell death (PCD) of plant cells to pathogen attack. This PCD is under control of salicylic acid (SA) via an unknown mechanism. In the presence of low concentrations of SA, the cells undergo a very rapid cell death, which needs only half of the time required for the normal hypersensitive reaction (HR). Northern blot studies for defence-related genes show that the expression of many of these genes is tightly linked to the status of the cell death program rather than to pathogen-derived elicitors. Thus the expression is much faster in the SA-accelerated PCD than in the normal hypersensitive reaction. In contrast, other pathogen-responsive genes are induced independently of the speed of PCD, indicating a divergent signalling mechanism. The production of reactive oxygen species during the oxidative burst of bacteria-inoculated soybean cells is slightly enhanced in the presence of SA but occurs at the same time as in untreated cells, suggesting that SA exhibits the control of the PCD downstream of the oxidative burst. Consistent with these findings a HR-specific marker gene is neither directly induced by H2O2 or SA. However, this gene shows a high expression in the regular HR and is induced much faster in the SA-accelerated PCD.  相似文献   

13.
Wan C  Li S  Wen L  Kong J  Wang K  Zhu Y 《Plant cell reports》2007,26(3):373-382
One of the cytoplasmic male sterility (CMS) types used for hybrid rice (Oryza sativa L.) production in China is the Honglian (HL)-CMS. Previous studies suggested that pollen abortion of the sterile plants was resulted from a special programmed cell death (PCD) program started at meiosis in the microspores. To elucidate the molecular basis of the pollen abortion, we compared the biochemical and physiological properties such as content of reactive oxygen species (ROS), ATP, NADH, total glutathione and ascorbate acid, the activities of dehydroascrbate reductase, glutathione reductase, ascorbate peroxides and superoxide dismutase, and the integrity of mitochondrial genome DNA isolated from an HL-CMS line, Yuetai A and its maintainer line, Yuetai B. Our results indicated that the mitochondria of the HL-CMS line suffered from a serious oxidative stress during microspores development. Oxidative stress induced by abnormal increased ROS at meiosis stage resulted in the depletion of ATP and NADH, and the degradation of mitochondrial genomic DNA. This suggests that the presence of redox signal originated in mitochondria affects the rest of the cell. Therefore, it is possible that the abortion of premature microspores in HL-CMS line is induced by the chronic oxidative stress in mitochondria in the early stage of pollen development.  相似文献   

14.
张宪省 《植物学报》2018,53(4):445-446
程序性细胞死亡在调控植物发育和胁迫响应中具有重要作用, 而活性氧是导致程序性细胞死亡的关键因子。日前, 中科院遗传与发育所李家洋研究组对活性氧调控程序性细胞死亡的分子机制进行了深度解析, 首次阐明了苹果酸作为信号分子, 经由叶绿体-线粒体穿梭途径而引发活性氧产生, 继而导致细胞死亡。该研究成果是程序性细胞死亡调控机制领域的重大突破。  相似文献   

15.
《BBA》2022,1863(6):148559
Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1‐1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.  相似文献   

16.
17.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

18.
Birds seem to employ powerful physiological strategies to curb the harmful effects of reactive oxygen species (ROS) because they generally live longer than predicted by the free radical theory of aging. However, little is known about the physiological mechanisms that confer protection to birds against excessive ROS generation. Hence, we investigated the ability of birds to control mitochondrial ROS generation during physiologically stressful periods. In our study, we analyzed the relationship between the thyroid status and the function of intermyofibrillar and subsarcolemmal mitochondria located in glycolytic and oxidative muscles of ducklings. We found that the intermyofibrillar mitochondria of both glycolytic and oxidative muscles down regulate ROS production when plasma T3 levels rise. The intermyofibrillar mitochondria of the gastrocnemius muscle (an oxidative muscle) produced less ROS and were more sensitive than the pectoralis muscle (a glycolytic muscle) to changes in plasma T3. Such differences in the ROS production by glycolytic and oxidative muscles were associated with differences in the membrane proton permeability and in the rate of free radical leakage within the respiratory chain. This is the first evidence which shows that in birds, the amount of ROS that the mitochondria release is dependent on: (1) their location within the muscle; (2) the type of muscle (glycolytic or oxidative) and (3) on the thyroid status. Reducing muscle mitochondrial ROS generation might be an important mechanism in birds to limit oxidative damage during periods of physiological stress.  相似文献   

19.
The prevailing models of stress induced Programmed Cell Death (PCD) posit that excess extracellular chemicals interact with or enter cells and disrupts cellular homeostasis. This activates signalling cascades involving the mitochondria, an increase in the steady state levels of Reactive Oxygen Species (ROS) as well as the activation of Bax and caspases. Further, the increased ROS also causes cellular damage that triggers or enhances PCD responses. The models have been modified in a number of ways, for example to include the existence of caspase and Bax independent forms of PCD. More recently, the ubiquity of ROS has also been challenged in part based on the failure of anti-oxidants to protect from diseases with increased intensity of oxidative stress. Here we focus on a number of other, often overlooked, observations regarding stress mediated responses that may further increase our mechanistic understanding of PCD. These include the concept of the “milieu intérieur” which suggests that cells actively protect themselves (adaptive homeostasis) in part by limiting entry to most extracellular chemicals. Of similar importance, stress also increases the levels of other stress inducible second messengers including ceramide, iron and calcium. This review focuses on the concept that stress is an agonist that conveys information that is transduced into the cell to activate the appropriate genetically encoded cell death and survival responses.  相似文献   

20.
Reactive oxygen species (ROS) have pleiotropic effects in plants. ROS can lead to cellular damage and death or play key roles in control and regulation of biological processes, such as programmed cell death (PCD). This dual role of ROS, as toxic or signalling molecules, is possible because plant antioxidant system (AS) is able to achieve a tight control over ROS cellular levels, balancing properly their production and scavenging. AS response in plant PCD has been clearly described only in the hypersensitive response in incompatible plant–pathogen interactions and in the senescence process and has not been completely unravelled. In sycamore (Acer pseudoplatanus L.) cultured cells PCD can be induced by Fusicoccin (Fc), Tunicamycin (Tu), and Brefeldin A (Ba). These chemicals induce comparable PCD time course and extent, while H2O2 production is detectable only in Fc- and, to a lesser extent, in Ba-treated cells. In this paper the AS has been investigated during PCD of sycamore cells, measuring the effects of the three inducers on the cellular levels of non-enzymatic and enzymatic antioxidants. Results show that the AS behaviour is different in the PCD induced by the three chemicals. In Fc-treated cells AS is mainly devoted to decrease the concentration of toxic intracellular H2O2 levels. On the contrary, in cells treated with Tu and Ba, the cell redox state is shifted to a more reduced state and the enzymatic AS is partially down-regulated, allowing ROS to act as signalling molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号