首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

2.
Ammonia oxidation is the first and rate-limiting step of nitrification, which is carried out by two groups of microorganisms: ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). In this study, diversity and abundance of AOB and AOA were investigated in five rock samples from a deep-sea hydrothermal vent site at the Mid-Atlantic Ridge (MAR) of the South Atlantic Ocean. Both bacterial and archaeal ammonia monooxygenase subunit A (amoA) gene sequences obtained in this study were closely related to the sequences retrieved from deep-sea environments, indicating that AOB and AOA in this hydrothermal vent site showed typical deep ocean features. AOA were more diverse but less abundant than AOB. The ratios of AOA/AOB amoA gene abundance ranged from 1/3893 to 1/242 in all investigate samples, indicating that bacteria may be the major members responding to the aerobic ammonia oxidation in this hydrothermal vent site. Furthermore, diversity and abundance of AOA and AOB were significantly correlated with the contents of total nitrogen and total sulfur in investigated samples, suggesting that these two environmental factors exert strong influences on distribution of ammonia oxidizers in deep-sea hydrothermal vent environment.  相似文献   

3.
Genetic diversity of archaea in deep-sea hydrothermal vent environments.   总被引:33,自引:0,他引:33  
K Takai  K Horikoshi 《Genetics》1999,152(4):1285-1297
Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.  相似文献   

4.
Cao H  Hong Y  Li M  Gu JD 《Antonie van Leeuwenhoek》2011,100(4):545-556
In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious community structure shift for both AOA and beta-AOB from the coastal marginal areas to the slope in the deep-sea was detected, while the OTU numbers of AOA amoA were more stable than those of the beta-AOB. The OTUs of beta-AOB increased with the distance from the coastal margin areas to the slope in the deep-sea. Beta-AOB showed lower diversity with dominant strains in a polluted area but higher diversity without dominant strains in a clean area. Moreover, the diversity of beta-AOB was correlated with pH values, while no noticeable relationships were established between AOA and physicochemical parameters. Beta-AOB was more sensitive to transect environmental variability and might be a potential indicator for environmental changes. Additionally, the surface sediments surveyed in the South China Sea harboured diverse and distinct AOA and beta-AOB phylotypes different from other environments, suggesting the endemicity of some nitrifying prokaryotes in the South China Sea.  相似文献   

5.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions.  相似文献   

6.
Mounting evidence suggests that ammonia-oxidizing archaea (AOA) may play important roles in nitrogen cycling in geothermal environments. In this study, the diversity, distribution and ecological significance of AOA in terrestrial hot springs in Kamchatka (Far East Russia) were explored using amoA genes complemented by analysis of glycerol dialkyl glycerol tetraethers (GDGTs) of archaea. PCR amplification of functional genes (amoA) from AOA and ammonia-oxidizing bacteria (AOB) was performed on microbial mats/streamers and sediments collected from three hot springs (42°C to 87°C and pH 5.5-7.0). No amoA genes of AOB were detected. The amoA genes of AOA formed three distinct phylogenetic clusters with Cluster 3 representing the majority (~59%) of OTUs. Some of the sequences from Cluster 3 were closely related to those from acidic soil environments, which is consistent with the predominance of low pH (<7.0) in these hot springs. Species richness (estimated by Chao1) was more frequently higher at temperatures below 75°C than above it, indicating that AOA may be favored in the moderately high temperature environments. Quantitative PCR of 16S rRNA genes showed that crenarchaeota counted for up to 80% of total archaea. S-LIBSHUFF separated all samples into two phylogenetic groups. The profiles of GDGTs were well separated among the studied springs, suggesting a spatial patterning of archaeal lipid biomarkers. However, this patterning did not correlate significantly with variation in archaeal amoA, suggesting that AOA are not the predominant archaeal group in these springs producing the observed GDGTs.  相似文献   

7.
The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area.  相似文献   

8.
Considering their abundance and broad distribution, non-extremophilic Crenarchaeota are likely to play important roles in global organic and inorganic matter cycles. The diversity and abundance of archaeal 16S rRNA and putative ammonia monooxygenase alpha-subunit (amoA) genes were comparatively analyzed to study genetic potential for nitrification of ammonia-oxidizing archaea (AOA) in the surface layers (0-1 cm) of four marine sediments of the East Sea, Korea. After analysis of a 16S rRNA gene clone library, we found various archaeal groups that include the crenarchaeotal group (CG) I.1a (54.8%) and CG I.1b (5.8%), both of which are known to harbor ammonia oxidizers. Notably, the 16S rRNA gene of CG I.1b has only previously been observed in terrestrial environments. The 16S rRNA gene sequence data revealed a distinct difference in archaeal community among sites of marine sediments. Most of the obtained amoA sequences were not closely related to those of the clones retrieved from estuarine sediments and marine water columns. Furthermore, clades of unique amoA sequences were likely to cluster according to sampling sites. Using real-time PCR, quantitative analysis of amoA copy numbers showed that the copy numbers of archaeal amoA ranged from 1.1 x 10(7) to 4.9 x 10(7) per gram of sediment and were more numerous than those of bacterial amoA, with ratios ranging from 11 to 28. In conclusion, diverse CG I.1a and CG I.1b AOA inhabit surface layers of marine sediments and AOA, and especially, CG I.1a are more numerous than other ammonia-oxidizing bacteria.  相似文献   

9.
Archaea have multiple roles in global biogeochemical cycles. However, we still have limited knowledge about how environmental factors affect the diversity and function of different archaeal lineages. The goal of this study was to examine the change in the abundance and community structure of Archaea in the sediments collected from the lower Pearl River (mainly North River tributary), its estuary, and coastal South China Sea (SCS) in order to evaluate how archaeal ecological function might change along the salinity gradient. Pyrosequencing of the 16S rDNA gene of Archaea was performed on sediment samples from Feilaixia Dam on the North River tributary to Wanshan islands, which have a salinity range of 0.1 to 31.2?‰. Consistent with the salt tolerance of cultivated representatives, methanogens in the genera Methanoregula, Methanosaeta, and Methanosarcina and Nitrososphaera within Thaumarchaeota of the ammonia-oxidizing Archaea (AOA) were abundant in freshwater sediments of the North River tributary, whereas the marine-associated genera Methanococcoides and Nitrosopumilus were the most abundant methanogens and AOA, respectively, in the estuary and coastal SCS. However, the percentages of total methanogens decreased and Thaumarchaeota increased with salinity, respectively. The phylum Crenarchaeota was largely represented by class-level lineages with no cultivated representatives, which collectively were more abundant in the estuary and coastal SCS in comparison to freshwater sites. This study indicates that salinity is the dominating factor affecting archaeal community structure and ecological function from the North River tributary of the Pearl River, its estuary, and coastal SCS, which is consistent with salinity control on microbial diversity in other regions of the world.  相似文献   

10.
In order to facilitate the evaluation of archaeal community diversity and distribution in high-temperature environments, 14 16S rRNA oligonucleotide probes were designed. Adequate hybridization and wash conditions of the probes encompassing most known hyperthermophilic Archaea, members of the orders Thermococcales, Desulfurococcales and Sulfolobales, of the families Methanocaldococcaceae, Pyrodictiaceae and Thermoproteaceae, of the genera Archaeoglobus, Methanopyrus and Ignicoccus, and of the as yet uncultured lineages Korarchaeota, Crenarchaeota marine group I, deep-sea hydrothermal vent euryarchaeotic group 2 (DHVE 2), and deep-sea hydrothermal vent euryarchaeotic group 8 (DHVE 8) were determined by dot-blot hybridization from target and non-target reference organisms and environmental clones. The oligonucleotide probes were also used to evaluate the archaeal community composition in nine deep-sea hydrothermal vent samples. All probes, except those targeting members of Sulfolobales, Thermoproteaceae, Pyrodictiaceae and Korarchaeota, gave positive hybridization signals when hybridized against 16S rDNA amplification products obtained from hydrothermal DNA extracts. The results confirmed the widespread occurrence of Thermococcales, Desulfurococcales, Methanocaldococcaceae and Archaeoglobus in deep-sea hydrothermal vents, and extended the known ecological habitats of uncultured lineages. Despite their wide coverage, the probes were unable to resolve the archaeal communities associated with hydrothermally influenced sediments, suggesting that these samples may contain novel lineages. This suite of oligonucleotide probes may represent an efficient tool for rapid qualitative and quantitative characterization of archaeal communities. Their application would help to provide new insights in the future into the composition, distribution and abundance of Archaea in high-temperature environments.  相似文献   

11.
【背景】对于环境样品中氨氧化古菌(Ammonia-oxidizing archaea,AOA)多样性的研究,利用amoA功能基因作为分子标记会比16SrRNA基因有更强的特异性和更高的分辨率,能更准确地反映环境样品中氨氧化古菌的种群结构和分布特征。然而,目前对amoA基因扩增子高通量测序的分析存在两大限制因素:一是缺乏相应的amoA基因参考数据库;二是AOA amoA基因在种水平上的相似性阈值未知,分析过程中没有明确的划分种水平操作分类单元(Operational taxonomic unit,OTU)的阈值。【目的】构建基于amoA功能基因序列分析氨氧化古菌多样性的方法,为基于高通量测序的功能微生物多样性分析提供参考。【方法】基于目前已通过分离纯化或富集培养获得的34株氨氧化古菌及功能基因数据库中收录的环境样品amoA基因序列,构建氨氧化古菌amoA基因参考数据库。通过菌株间两两比对获得的amoA基因相似度与16SrRNA基因相似度的相关性分析,确定amoA基因在种水平上的相似性阈值。基于MOTHUR软件平台,利用建立的参考数据库和确定的阈值对南海一个垂直水体剖面样品的amoA基因序列进行多样性分析。【结果】构建了含有26 091条序列信息的古菌amoA基因参考数据库,确定了89%作为分析过程中古菌amoA基因划分种水平OTU的阈值,对南海水体样品氨氧化古菌的多样性分析结果很好地显示了南海不同深度水层水体中氨氧化古菌的种群结构和系统发育关系,有效揭示了南海氨氧化古菌的垂直分布差异。【结论】建立了基于amoA基因高通量测序的氨氧化古菌多样性分析方法,此方法可以有效分析环境样品中氨氧化古菌的多样性。  相似文献   

12.
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) vary in their contribution to nitrification in different environments. The eastern China marginal seas (ECMS) are featured by complex river runoffs and ocean currents, forming different sediment patches. Here, via quantitative PCR and clone library analysis of the amoA genes, we showed that AOB were more abundant than AOA in ECMS sediments. The abundance, diversity and richness of AOA, but not AOB, were higher in the East China Sea (ECS) than in the Yellow Sea (YS) and Bohai Sea (BS). Nitrosopumilus (AOA) and Nitrosospira (AOB) were predominant lineages, but their abundances varied significantly between ECS, and BS and YS. This was mainly attributed to salinity and dissolved oxygen of the bottom water. The discovery of a high abundance of Nitrosophaera at estuarine sites suggested strong terrigenous influence exerted on the AOA community. In contrast, variations in ocean conditions played more important roles in structuring the AOB community, which was separated by bottom water dissolved oxygen into two groups: the south YS, and the north YS and BS. This study provides a comprehensive insight into the spatial distribution pattern of ammonia-oxidizing prokaryotes in ECMS sediments, laying a foundation for understanding their relative roles in nitrification.  相似文献   

13.
We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.  相似文献   

14.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution.  相似文献   

15.
Over the past 35 years, researchers have explored deep-sea hydrothermal vent environments around the globe and studied a number of archaea, their unique metabolic and physiological properties, and their vast phylogenetic diversity. Although the pace of discovery of new archaeal taxa, phylotypes and phenotypes in deep-sea hydrothermal vents has slowed recently, bioinformatics and interdisciplinary geochemistry-microbiology approaches are providing new information on the diversity and community composition of archaea living in deep-sea vents. Recent investigations have revealed that archaea could have originated and dispersed from ancestral communities endemic to hydrothermal vents into other biomes on Earth, and the community structure and productivity of chemolithotrophic archaea are controlled primarily by variations in the geochemical composition of hydrothermal fluids.  相似文献   

16.
Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale.  相似文献   

17.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Nitrification represents one of the key steps in the global nitrogen cycle. While originally considered an exclusive metabolic capability of bacteria, the identification of the Thaumarchaeota revealed that ammonia-oxidizing archaea (AOA) are also important contributors to this process, particularly in acidic environments. Nonetheless, the relative contribution of AOA to global nitrification remains difficult to ascertain, particularly in underexplored neutrophilic and alkalinophilic terrestrial systems. In this study we examined the contribution of AOA to nitrification within alkaline (pH 8.3–8.7) cave environments using quantitative PCR, crenarchaeol lipid identification and measurement of potential nitrification rates. Our results showed that AOA outnumber ammonia-oxidizing bacteria (AOB) by up to four orders of magnitude in cave sediments. The dominance of Thaumarchaeota in the archaeal communities was confirmed by both archaeal 16S rRNA gene clone library and membrane lipid analyses, while potential nitrification rates suggest that Thaumarchaeota may contribute up to 100% of ammonia oxidation in these sediments. Phylogenetic analysis of Thaumarchaeota amoA gene sequences demonstrated similarity to amoA clones across a range of terrestrial habitats, including acidic ecosystems. These data suggest that despite the alkaline conditions within the cave, the low NH3 concentrations measured continue to favor growth of AOA over AOB populations. In addition to providing important information regarding niche differentiation within Thaumarchaeota, these data may provide important clues as to the factors that have historically led to nitrate accumulation within cave sediments.  相似文献   

19.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

20.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号