首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu  Yuanyuan  Li  Kangkang  Cao  Sainan  Xiong  Guang  Zhu  Lu 《Plasmonics (Norwell, Mass.)》2019,14(6):1577-1586

A new genetic algorithm (GA)-based multi-slot nanoantenna is proposed for energy harvesting, which consists of two element nanoantennas with rectangular shape and with double bowtie double ring (DBDR) slot. The DBDR slot structure can enhance the electric field to increase the absorptivity of nanoantennas; however, the larger parameter space of multi-slot is more hardly controlled. Therefore, we use GA to optimize the parameters of the DBDR slot nanoantenna and the Finite-Difference Time-Domain method to calculate the absorptivity. It is found that absorptivity of the optimized nanoantenna is over 77% in 400–1800 nm waveband. We attribute the better absorbing property of the nanoantenna to the synergistic effect of the localized surface plasmon resonance enhancement and coupling between slots.

  相似文献   

2.
Liu  Huizhe  Sun  Song  Wu  Lin  Bai  Ping 《Plasmonics (Norwell, Mass.)》2014,9(4):845-850

In this paper, the optical near-field enhancement of graphene bowtie antennas is numerically investigated at terahertz frequencies using boundary element method. The enhanced field intensity at the gap region is a result of the mutual coupling between two triangular elements upon the excitation of graphene plasmons. Firstly, wide plasmon frequency tunability is demonstrated by changing the chemical potential of graphene without the need to alter the antenna geometry. Secondly, by varying the tip angle and radius of curvature of the graphene antennas, the field intensity enhancement at the gap center of the two-element antennas is systematically studied. It is found that graphene bowtie antennas with two round-cornered equilateral triangles have superior performance to other two-element antennas, such as ribbon pair, sharp-cornered bowtie, and disk pair antennas. Last but not least, by applying a moderate chemical potential of 0.4 eV to graphene bowtie antennas, we found that the field intensity enhancement at gap center is about 220 times as much as using gold of comparable sizes. In short, graphene bowtie antennas of rounded corners give rise to considerable near-field enhancement and are promising for a wide range of applications such as molecular sensing at terahertz frequencies.

  相似文献   

3.
Optimization of the geometry of a metallic bowtie gap at radio frequency is presented. We investigate the geometry of the bowtie gap including gap size, tip width, metal thickness and tip angle at macroscale to find the maximum electric field enhancement across the gap. The results indicate that 90° bowtie with 0.06 λ gap size has the most |E t |2 enhancement. Effects of changing the permittivity and conductivity of the material across the gap are also investigated. NEC-2 simulations show that the numerical calculations agree with the experimental results. Since the design and fabrication of a plasmonic device (nanogap) at nanoscale is challenging, the results of this study can be used to estimate the best design parameters for nanogap structure. Different amounts of enhancement at different frequency ranges are explained by mode volume. The product of the mode volume and |E t |2 enhancement is constant for different gap structures and different frequencies.  相似文献   

4.
The detection sensitivities of gap plasmons in gold nanoslit arrays are studied and compared with surface plasmons on outside surface. The nanoslit arrays were fabricated in a 130 nm-thick gold film with various slit widths. For transverse-magnetic (TM) incident wave, the 600 nm-period nanoslit array shows two distinguishable transmission peaks corresponding to the resonances of gap plasmons and surface plasmons, respectively. The surface sensitivities for both modes were compared by coating thin SiO(2) film and different biomolecules on the nanoslit arrays. Our experimental results verify gap plasmons are more sensitive than conventional surface plasmons. Its detection sensitivity increases with the decrease of slit width. The gap plasmon is one order of magnitude sensitive than the surface plasmon for slit widths smaller than 30 nm. We attribute this high sensitivity to the large overlap between biomolecules and nanometer-sized gap plasmons.  相似文献   

5.

Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.

  相似文献   

6.
Surface plasmon resonance (SPR) absorption spectra of gold nanodisks hexagonally arranged in planar arrays have been studied by using coupled dipole method and quasi-static approximation. The calculation results reveal that the increasing aspect ratio (AR) of gold disks in the close-packed nanoarray leads to SPR blue shift firstly and then red shift. The critical AR corresponding to the maximum blue shift can be controlled by tuning the interparticle distance and particle size. The physical mechanism of this non-monotonic SPR shift is investigated based on the competition between the influences from shape factor and arranging structure of the array. Although increasing the semi-minor axis of gold disk reduces the AR and leads to a blue shift of SPR, this increasing semi-minor axis also reduces the average gap between two neighboring disks and enhances their coupling. Furthermore, the coulombic attraction between two neighboring disks introduces an additional plasmon damping and results in a red shift of SPR. This competition between AR and interparticle coupling improves the tuning ability of SPR in anisotropic metallic nanoparticle arrays and presents a potential for design and fabrication of optical biochip based on SPR.  相似文献   

7.
A novel graphitized ordered macroporous carbon (GMC, pore size 380 nm) with hierarchical mesopores (2–30 nm) and high graphitization degree was prepared by nickel-catalyzed graphitization of polystyrene arrays. The obtained GMC possessed high specific surface area, large pore volume, and good electrical conductivity, which was explored for the enzyme entrapment and biosensor fabrication by a facile method. With advantages of novel nanostructure and good electrical conductivity, direct electrochemistry of hemoglobin (a model protein) was observed on the GMC-based biocomposite with a formal potential of −0.36 V (vs. Ag/AgCl) and an apparent heterogeneous electron transfer rate constant (ks) of 1.2 s−1 in pH 7.0 buffer. Comparative studies revealed that GMC offered significant advantages over carbon nanotubes (CNTs) in facilitating direct electron transfer of entrapped Hb. The fabricated biosensor exhibited good sensitivity (101.6 mA cm−2 M−1) and reproducibility, wide linear range (1–267 μM), low detection limit (0.1 μM), and good long-term stability for H2O2 detection. GMC proved to be a promising matrix for enzyme entrapment and biosensor fabrication, and may find wide potential applications in biomedical detection and environmental analyses.  相似文献   

8.
This article presents a concise review of preparation methods for transparent nanostructured films, with an emphasis on their current applications in transmission-localized surface plasmon resonance (T-LSPR) sensing. One of the first methods used for the fabrication of transparent nanostructured metal films is a direct vacuum evaporation of thin gold films. Self-induced formations of small gold islands result in transparent nanostructured gold arrays. The most well-established method is a nanosphere lithography developed by Van Duyne. Nanotriangular island arrays with controlled size and optical properties can be fabricated by this protocol. A different nanolithography method known as focused ion beam milling is reported and used for the fabrication of nanohole arrays. Simple assembly of solution-phase synthesized nanoparticles has also been utilized for the preparation of nanoparticle arrays capable of T-LSPR sensing. Lastly, this article also describes a new preparation strategy, in which self-assembly/thermolysis of nanoparticle multilayers is employed to obtain transparent nanoisland architectures on glass substrates.  相似文献   

9.
Large area monolayer of self-assembled polystyrene sphere (PS) arrays were formed by an interface self-assembly method and the gap of PS was adjusted by O2 plasma treatment (OPT). After different duration of OPT, the spacing between the PSs varied from 5 to 88 nm. Then, 20 nm Au film was deposited on the PS arrays by electron beam deposition. The absorption peaks of Au-coated PS array red-shifted obviously by changing the gap of PS. The new absorption peaks emerged when the gap of the PS decreased to about 20 nm. The surface plasmon resonance (SPR) was employed to explain the absorption proportion of this Au-PS structure. These micro-nano structures exhibit tunable SPR bands, which may be useful to the applications in some research fields, such as biosensing, single molecule detection, and novel optoelectronic devices.  相似文献   

10.
Plasmonic properties of gold nanovoid array substrates for fiber-based surface-enhanced Raman scattering (SERS) sensing are studied numerically and experimentally. In the nanovoid arrays, each void has openings on both sides, bottom hole facing the fiber tip for introducing incident light and collecting scattered light and the top hole exposed to the analyte solution for interrogating analyte molecules in the voids. Electromagnetic field modes are confined strongly in and around these nanovoids, acting as localized plasmon resonators. The enhanced electric field extends hundreds of nanometers into the voids, resulting in a large SERS-active zone several orders of magnitude larger than nanoparticle-based structures. The effect of structural parameters of the nanovoid arrays, including void diameter, Au film thickness, and bottom hole diameter, on electric field confinement in the voids is investigated using three-dimensional finite difference time domain simulation. Au nanovoid arrays are fabricated using a scalable, inexpensive nanosphere lithography fabrication method. The largest SERS signal is realized by tuning the localized plasmon resonance peak of Au nanovoid arrays to the laser excitation wavelength. Multiplexed detection capability with the fiber-based SERS sensor using Au nanovoid arrays is demonstrated by measuring the Raman spectrum of a mixture solution of diethylthiatricarbocyanine and crystal violet.  相似文献   

11.
A localized surface plasmon resonance immunoassay has been developed to determine prolactin hormone in human serum samples. Gold nanoparticles were synthesized, and the probe was prepared by electrostatic adsorption of antibody on the surfaces of gold nanoparticles. The pH and the antibody-to-gold nanoparticle ratio, as the factors affecting the probe functions, were optimized. The constructed nanobiosensor was characterized by dynamic light scattering. The sensor was applied for the determination of prolactin antigen concentration based on the amount of localized surface plasmon resonance peak shift. A linear dynamic range of 1–40 ng ml−1, a detection limit of 0.8 ng ml−1, and sensitivity of 10 pg ml−1 were obtained. Finally, the nanobiosensor was applied for the determination of prolactin in human control serum sample.  相似文献   

12.
Highly ordered Ni nanowire arrays (NiNWAs) were synthesized for the first time using a template-directed electropolymerization strategy with a nanopore polycarbonate (PC) membrane template, and their morphological characterization were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). A NiNWAs based electrode shows very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which has been utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 5.0 × 10−7 to 7.0 × 10−3 M, a high sensitivity of 1043 μA mM−1 cm−2, and a low detection limit of 1 × 10−7 M. The experiment results also showed that the sensor exhibits good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species.  相似文献   

13.
We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm?1 and changes in the Raman peaks in the 1200–1700 cm?1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm?1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm?1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ~1470 cm?1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ~1000 cm?1 peak and distribution of the signal in the 1200–1700 cm?1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ~259 nm excitation wavelength.  相似文献   

14.
We design a deep-trench microstructure covered with thin gold films to enhance near-infrared absorption of silicon material. This deep-trench microstructure exhibits a much higher absorption compared with plane nanoantenna arrays. We investigate its absorption enhancement in detail and find that the trench-shaped plasmonic waveguide greatly contributes an absorption enhancement by concentrating light effectively. Further, we clarify the influence of both trench depth and gold films covering on different positions of deep trench on the absorption. Finally, we use surface plasmon polaritons offered by plasmonic waveguide to explain well the significant enhancement of near-infrared absorption.  相似文献   

15.
In this paper, systematic study for asymmetric tapered dipole nanoantenna is implemented using finite element frequency domain (FEFD) solver where harvesting efficiency, field confinement, surface current, and input impedance are calculated at wavelength of 500 nm. The proposed nanoantennas achieve a harvesting efficiency of 61.3% and a field enhancement factor of 37.7 over the conventional dipole nanoantenna. This enhancement is attributed to the irregularity of the surface current distribution on the asymmetric designs. Particle swarm optimization technique is used to find the optimum design geometrical parameters through an external link between the optimization algorithm and the FEFD solver. Moreover, the proposed designs offer a resonance impedance of 500 Ω to match that of fabricated rectifiers. Further study of the structure fabrication tolerance is included which shows the robustness of the proposed nanoantennas.  相似文献   

16.
There is a growing demand to realize low-cost miniaturized point-of-care testing diagnostic devices capable of performing many analytical assays. To fabricate such devices, three-dimensional printing (3DP)-based fabrication techniques provide a turnkey approach with marked precision and accuracy. Here, a 3DP fabrication technique was successfully utilized to fabricate closed bipolar electrode-based electrochemiluminescence (ECL) devices using conductive graphene filament. Furthermore, using these ECL devices, Ru(bpy)32+/TPrA- and luminol/H2O2-based electrochemistry was leveraged to sense dopamine and choline respectively. For ECL signal capture, two distinct approaches were used, first a smartphone-based miniaturized platform and the second with a photomultiplier tube embedded with the internet of things technology. Choline sensing led to a linear range 5–700 μM and 30–700 μM with a limit of detection (LOD) of 1.25 μM (R2 = 0.98, N = 3) and 3.27 μM (R2 = 0.97, N = 3). Furthermore, dopamine sensing was achieved in a linear range 0.5–100 μM with an LOD = 2 μM (R2 = 0.99, N = 3) and LOD = 0.33 μM (R2 = 0.98, N = 3). Overall, the fabricated devices have the potential to be utilized effectively in real-time applications such as point-of-care testing.  相似文献   

17.
Intact follicles as well as defolliculated oocytes of the mouse were studied by freeze-fracture electron microscopy. In intact follicles the oocyte plasma membrane shows two prominent types of intra-membrane particle array:gap junctions and yet undescribed rhombic particle arrays. The gap junctions vary in size (from 5 to 500 IMPs) and shape. Occasionally they are organized in so-called formation plaques. The rhombic particle arrays consist of 25 IMPs on an average, the IMP diameter is 10.5 nm, the mean IMP distance is 19.8 nm and the acute angle in the array is 81.3 degrees. After defolliculation the gap junctions disassemble and change transiently into linear IMP arrays. The rhombic particle arrays persist indicating that they are of a non-junctional nature. The possible function of the rhombic particle arrays is discussed in relation to similar membrane specializations in excitable cells.  相似文献   

18.
Non-conventional ceramic-based composite coatings were fabricated by air plasma spraying in order to evaluate their microstructural and electromagnetic properties. Different chromia-based formulations were selected and prepared in the form of feedstock materials for the fabrication of samples having an average thickness of about 3 mm. Waveguide testing was performed on the deposited coatings and most interesting results are reported and commented. Despite the complex formulation of investigated materials, as compared with standard materials for thermal spraying, it has been evidenced as plasma spraying can represent an interesting technique to produce functionalized surfaces with tailored electromagnetic properties, adding new potential application areas to the well-known fields where this technology is already present.  相似文献   

19.
Water dispersible zinc sulfide quantum dots (ZnS QDs) with an average diameter of 2.9 nm were synthesized in an environment friendly method using chitosan as stabilizing agent. These nanocrystals displayed characteristic absorption and emission spectra having an absorbance edge at 300 nm and emission maxima (λ emission) at 427 nm. Citrate-capped silver nanoparticles (Ag NPs) of ca. 37-nm diameter were prepared by modified Turkevich process. The fluorescence of ZnS QDs was significantly quenched in presence of Ag NPs in a concentration-dependent manner with K sv value of 9 × 109 M−1. The quenching mechanism was analyzed using Stern–Volmer plot which indicated mixed nature of quenching. Static mechanism was evident from the formation of electrostatic complex between positively charged ZnS QDs and negatively charged Ag NPs as confirmed by absorbance study. Due to excellent overlap between ZnS QDs emission and surface plasmon resonance band of Ag NPs, the role of energy transfer process as an additional quenching mechanism was investigated by time-resolved fluorescence measurements. Time-correlated single-photon counting study demonstrated decrease in average lifetime of ZnS QDs fluorescence in presence of Ag NPs. The corresponding F?rster distance for the present QD–NP pair was calculated to be 18.4 nm.  相似文献   

20.
In this study, we fabricated a novel variable wavelength surface plasmon resonance (SPR) sensor, which detects resonance conditions such as a maximum attenuation wavelength, measuring change of microscopic refractive index. Such a change was measured to detect a salmonella antigen–antibody reaction and a penicillinase–penicillin reaction. Our experiments were performed after immobilizing a salmonella antibody on the sensor chip. We measured the shift in resonant wavelength during the antigen–antibody reaction for 30 min by injecting 5 × 107 cells/ml concentration of salmonella antigen solution into the sample chamber. Also, after immobilizing penicillinase on the sensor chip, we measured the shift in resonant wavelength during the reaction. Penicillin solution at 10 mM was injected into the sample chamber. The shift of resonant wavelength for each experiment was measured using a white light source, multimode optical fiber, a part of sensor chip and an optical spectrum analyzer.As a result, the resonant wavelength shifted about 0.26 nm/min owing to the salmonella antibody–antigen reaction. Thus, we could detect the change in wavelength (0.8 nm/min) through the interaction of penicillin and penicillinase for 15 min using variable wavelength SPR sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号