首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

2.
Light acclimatisation capabilities of Elodea nuttallii at nearly ambient DIC conditions were investigated by determining growth characteristics, main photosynthetic parameters and pigmentation of plants incubated at 5 different irradiances (10–146 μmol photons m−2 s−1). Positive net growth was observed under all light treatments tested. Maximum ratio root versus shoot (r:s) of 1.86 was achieved at medium irradiances (72–94 μmol photons m−2 s−1), whereas at low (10 μmol photons m−2 s−1) and high irradiances (146 μmol photons m−2 s−1) r:s was significantly lower (0.39 and 1.05, respectively). With respect to main photosynthetic parameters, an increase of light compensation points (E c), attended by decreasing ratios of light saturation points of photosynthesis (E k)/irradiance were observed. E c values were comparable to other low-light adapted macrophytes, which indicate that E. nuttallii can be regarded as a low-light adapted plant, under photorespiratory conditions. This was also confirmed by maximum E k values of just 73 μmol photons m−2 s−1. Further support was achieved from pigmentation and non-photochemical quenching (NPQ) data, both indicating rather limited acclimatisation ability at light treatments above 90 μmol photons m−2 s−1. These results are discussed with respect to the competitive abilities of E. nuttallii under nearly ambient (photorespiratory) DIC conditions, especially in dense stands and turbid phytoplankton-dominated waters.  相似文献   

3.
Plantlets of Alocasia amazonica regenerated under a photon flux density (PFD) of 15 or 30 μmol m−2 s−1 showed better growth and development than those grown under higher PFDs. While chlorophyll a and chlorophyll b decreased, the number of stomata increased with increasing PFD. Photoperiods also affected plantlet growth and stomatal development. Highest growth was observed for the short photoperiod (8/16 h) and for equinoctial (12/12 h) light and dark periods. Very few stomata developed in the leaves of plantlets grown under a short photoperiod (8/16 h) and the number of stomata increased with increasing light period. In conclusion, both light intensity and photoperiod independently affect growth of A. amazonica and development of stomata, depending on the intensity and duration of light treatment.  相似文献   

4.
Chlorophyll-a (chl-a) and carotenoid pigments of the zooxanthellate octocoral Sinularia flexibilis were analyzed using high performance liquid chromatography following exposure to three light intensities for over 30 days. From the coral fragments located at different light intensities, a total carotenoid of >41 μg g−1 dry weight, including peridinin, xanthophylls (likely diadinoxanthin + diatoxanthin), and chl-a as the most abundant pigments, with minor contents of astaxantin and β-carotene were detected. The whole content of chl-a weighed 5 μg g−1 dry weight in all coral colonies. Chl-a and carotenoids contributed 11.2% and 88.2%, respectively, to all pigments detected, and together accounted for 99.4% of the total pigments present. The highest contents of carotenoids and chl-a was observed in the coral grafts placed in an irradiance of 100 μmol quanta m−2 s−1; they showed lower ratios of total carotenoids: chl-a compared to those exposed to 400 μmol quanta m−2 s−1 after >30 days of incubation. The ratios of peridinin and xanthophylls with respect to chl-a from the colonies at 400 μmol quanta m−2 s−1 were approximately double those observed at irradiances of 100 and 200 μmol quanta m−2 s−1. Partial quantification of pigments in this study showed that the carotenoids of S. flexibilis showed a decrease at irradiances above 100 μmol quanta m−2 s−1, with the exception of an increase in β-carotene at 200 μmol quanta m−2 s−1.  相似文献   

5.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

6.
Samples of the massive drifting green alga, Ulva linza, were collected from the coastal waters of the Yellow Sea, southwest of Korea, in early July 2009, and cultured under laboratory conditions. The effects of various temperature (10–30°C) and irradiance levels (0–1,000 μmol photons m−2 s−1) on photosynthesis, growth, and tissue nutrient content of U. linza were investigated in laboratory for both individuals of the late-stage vegetation (LSV) and the early-stage vegetation (ESV). After 1 h acclimation to various irradiance and temperature conditions, maximum gross photosynthetic rate of ESV was significantly higher than those of LSV. In the long-term (7-d) acclimation experiments to various irradiance and temperature levels, gross photosynthetic rates of ESV individuals were also significantly higher than those of LSV individuals. High photosynthetic rate of ESV individuals induced increase in mass of about 60% over the growth saturation irradiance (136 μmol photons m−2 s−1) and about 20% under low temperature conditions (10–15°C) during 7-d. The gross photosynthesis of LSV individuals was low when examined under temperature and irradiance conditions that were optimum for ESV growth. Consequently, free-floating U. linza exhibits cellular senescence beginning in early July in the Yellow Sea, and green tides formed by this species cannot be maintained beyond this time in the open sea. However, we expect that U. linza can proliferate quickly after settlement on new coastal habitats of the Yellow Sea because of the high tissue nitrogen utilization for photosynthesis in ESV, which is formed by germination of reproductive cells.  相似文献   

7.
The life-cycle of Scinaia interrupta (A.P. de Candolle) M. J. Wynne was investigated in vitro using four irradiance regimes: 4, 8, 12 and 16 μmol photons m−2 s−1. A triphasic heteromorphic life-cycle was observed. Carpospores released by cystocarps of gametophytes collected in the field developed into filamentous tetrasporophytes, which produced tetrahedral tetrasporangia. Tetrasporangial development was accelerated under higher irradiance levels. Tetraspores germinated into filamentous protonemal gametophytes, initially identical to the tetrasporophyte. Filamentous gametophytes developed apical utricles and gave rise directly to the fleshy gametophyte. Further development of the fleshy gametophyte was not observed at the lowest irradiance regime (4 μmol photons m−2 s−1). The present study reports for the first time the influence of the irradiance regime on the initial tetrasporangial development and in the development of the fleshy gametophyte, and reinforces the importance of light intensity on Scinaia life-cycle. Production of apical utricles by the filamentous gametophyte is newly reported for the genus.  相似文献   

8.
Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) is distributed from Mexico to the Maritime Antarctic. It grows forming inconspicuous populations in humid and cold sites along high elevations in the Andes Mountains. Mediterranean Andes is characterized by a wider oscillation of diurnal and seasonal temperature, while the Maritime Antarctic is characterized by permanent low temperatures. Both places may experience high irradiance during sunny days (reaching up to 2,000 μmol photons m−2 s−1); however, the frequency of sunny days in the Maritime Antarctica is significantly lower (less than 20% of the whole growing season). We study whether acclimation to each environment relies on different photoprotective mechanisms. The Andean ecotype that has a longer growing season and a higher light integral reduces light absorption by the development of smaller chloroplasts with lower stacking granum area and down-regulation of Lhcb2. It also enhances the dissipation of the excess of absorbed energy by higher level of de-epoxidation of xanthophylls pool. On the other hand, the Antarctic ecotype which has developed under a shorter growing season, with lower total irradiance and continuous low temperatures, maximizes photochemical process even at low temperatures and it has a lower light-harvesting/core complex ratio and higher level of photoprotection supplied by an unusually high β-carotene and xanthophylls cycle pool. It resembles a well full light acclimated plant, probably due to higher excitation pressure imposed by lower temperature even at moderate irradiance. It is suggested that the biochemical plasticity of this species, highlighted by the development of these different strategies, is essential to cope successfully with these particular environments.  相似文献   

9.
Photosynthetic characteristics of Dunaliella salina with high (red form) and low β-carotene (green form) concentrations were studied. D. salina growing in brine saltworks exhibited a high level of β-carotene (15 pg cell−1). The rate of oxygen evolution as a function of irradiance was higher in the red than in the green form (on chlorophyll basis). Photosynthetic inhibition of the green form was observed above 500 μmol m−2 s−1. The red form appeared more resistant to high irradiance and no inhibition in O2 evolution was observed up 2000 μmol m−2 s−1. However, when these results are expressed on a cell number basis the rate of oxygen evolution was significantly higher in the green form. Carbonic anhydrase (CA) activity (total, soluble, membrane bound) was found in red and green forms. CA was higher in the red form on a chlorophyll basis, but lower if expressed on a protein basis. The light dependent rate of oxygen evolution and photoinhibition depends on the concentration of β-carotene in D. salina cells.  相似文献   

10.
Batch cultures of the green microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix and their corresponding co-cultures were grown in municipal wastewater in order to study their growth as well as the nitrogen (NH4–N) and phosphorus (PO43−–P) removal. The cultures were grown under two irradiances of 20 and 60 μmol photons m−2 s−1 in shaken and unshaken conditions. The co-culture of unshaken Chlorella and Planktothrix showed the greatest growth under both irradiances. The monoalgal Planktotrix cultures showed better growth when unshaken than when shaken, whereas Chlorella cultures grew better when mixed, but only at the higher irradiance. The highest percentage of nitrogen removal (up to 80%) was attained by the unshaken co-cultures of Chlorella and Planktothrix. The amount of nitrogen recycled in the biomass reached up to 85% of that removed. Shaken monoalgal cultures of Chlorella showed phosphorus removal under both irradiances. They completely removed the initial phosphorus concentration (7.47 ± 0.17 mg L−1) within 96 and 48 h under 20 and 60 μmol photons m−2 s−1, respectively.  相似文献   

11.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

12.
13.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

14.
In winter of 2009/2010, Aphanizomenon flos-aquae bloomed in the ice and snow covered oligo-mesotrophic Lake Stechlin, Germany. The photosynthesis of the natural population was measured at eight temperatures in the range of 2–35°C, at nine different irradiance levels in the range of 0–1,320 μmol m−2 s−1 PAR at each applied temperature. The photoadaptation parameter (I k) and the maximum photosynthetic rate (P max) correlated positively with the temperature between 2 and 30°C, and there was a remarkable drop in both parameters at 35°C. The low I k at low temperatures enabled the active photosynthesis of overwintering populations at low irradiance levels under ice and snow cover. The optimum of the photosynthesis was above 20°C at irradiances above 150 μmol m−2 s−1. At lower irradiance levels (7.5–30 μmol m−2 s−1), the photosynthesis was the most intensive in the temperature range of 2–5°C. The interaction between light and temperature allowed the proliferation of A. flos-aquae in Lake Stechlin resulting in winter water bloom in this oligo-mesotrophic lake. The applied 2°C is the lowest experimental temperature ever in the photosynthesis/growth studies of A. flos-aquae, and the results of the P–I and P–T measurements provide novel information about the tolerance and physiological plasticity of this species.  相似文献   

15.
The in vivo effect of ultraviolet radiation-B (UVBR) in apical segments of Chondracanthus teedei was examined. Over a period of 7 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m−2 s−1 and PAR + UVBR at 1.6 W m−2 for 3 h per day. The samples were processed for electron microscopy and histochemistry; also was analyzed growth rates, mitochondrial activity, protein levels, content of photosynthetic pigments and photosynthetic performance. UVBR elicited increased cell wall thickness and accumulation of plastoglobuli, changes in mitochondrial organization and destruction of chloroplast internal organization. Compared to controls, algae exposed to PAR + UVBR showed a growth rate reduction of 55%. The content of photosynthetic pigments, including chlorophyll a and phycobiliproteins, decreased after exposure to PAR + UVBR. This result agrees with the decreased photosynthetic performance observed after exposing algae to PAR + UVBR. Irradiation also elicited increased activity of the antioxidant enzyme glutathione peroxidase and decreased mitochondrial NADH dehydrogenase activity, which correlated with the decreased protein content in plants exposed to PAR + UVBR. Taken together, these findings strongly indicate that UVBR negatively affects the architecture and metabolism of the carragenophyte C. teedei.  相似文献   

16.
The ability of spring barley (Hordeum vulgare cv. Akcent) to adjust the composition and function of the photosynthetic apparatus to growth irradiances of 25–1200 μmol m−2 s−1 was studied by gas exchange and chlorophyll a fluorescence measurements and high-performance liquid chromatography. The increased growth irradiance stimulated light- and CO2-saturated rates of CO2 assimilation expressed on a leaf area basis up to 730 μmol m−2 s−1 (HL730), whereas at an irradiance of 1200 μmol m−2 s−1 (EHL1200) both rates decreased significantly. Further, the acclimation to EHL1200 was associated with an extremely high chlorophyll a/b ratio (3.97), a more than doubled xanthophyll cycle pool (VAZ) and a six-fold higher de-epoxidation state of the xanthophyll cycle pigments as compared to barley grown under 25 μmol m−2 s−1 (LL25). EHL1200 plants also exhibited a long-term inhibition of Photosystem II (PS II) photochemical efficiency (F v/F m). Photosynthetic capacity, chlorophyll a/b and VAZ revealed a linear trend of dependence on PS II excitation pressure in a certain range of growth irradiances (100–730 μmol m−2 s−1). The deviation from linearity of these relationships for EHL1200 barley is discussed. In addition, the role of increased VAZ and/or accumulation of zeaxanthin and antheraxanthin in acclimation of barley to high irradiance is studied with respect to regulation of non-radiative dissipation and/or photochemical efficiency within PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

18.
The photosynthetic rates and various components of photosynthesis including ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4.1.1.39), chlorophyll (Chl), cytochrome (Cyt) f, and coupling factor 1 (CF1) contents, and sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically under two irradiances, namely, 1000 and 350 μmol quanta · m−2 · s−1, at three N concentrations. The light-saturated rate of photosynthesis measured at 1800 μmol · m−2 · s−1 was almost the same for a given leaf N content irrespective of growth irradiance. Similarly, Rubisco content and SPS activity were not different for the same leaf N content between irradiance treatments. In contrast, Chl content was significantly greater in the plants grown at 350 μmol · m−2 · s−1, whereas Cyt f and CF1 contents tended to be slightly smaller. However, these changes were not substantial, as shown by the fact that the light-limited rate of photosynthesis measured at 350 μmol · m−2 · s−1 was the same or only a little higher in the plants grown at 350 μmol · m−2 · s−1 and that CO2-saturated photosynthesis did not differ between irradiance treatments. These results indicate that growth-irradiance-dependent changes in N partitioning in a leaf were far from optimal with respect to N-use efficiency of photosynthesis. In spite of the difference in growth irradiance, the relative growth rate of the whole plant did not differ between the treatments because there was an increase in the leaf area ratio in the low-irradiance-grown plants. This increase was associated with the preferential N-investment in leaf blades and the extremely low accumulation of starch and sucrose in leaf blades and sheaths, allowing a more efficient use of the fixed carbon. Thus, morphogenic responses at the whole-plant level may be more important for plants as an adaptation strategy to light environments than a response of N partitioning at the level of a single leaf. Received: 23 February 1997 / Accepted: 8 May 1997  相似文献   

19.
Cecropia peltata is popularly known as “guarumbo” in Mexico and is used in traditional medicine for treatment of diabetes mellitus. C. peltata plants were cultivated in a hydroponic system under controlled conditions. Gradients of light (20, 30 and 100 μmol m−2 s−1) and nitrate concentrations (13, 2 and 0.2 mM) were applied to estimate their effect on biomass allocation and accumulation of bioactive (chlorogenic acid and isoorientin) phenolic compounds over a 28-day period. According to carbon nutrient balance (CNB) hypothesis predictions, biomass accumulation in foliage was stimulated by the highest irradiance (100 μmol m−2 s−1); similarly, at highest irradiance in combination with lowest nitrate concentration (0.2 mM), root growth was stimulated (root-to-shoot ratio increased twofold with respect to the control). In these conditions, total phenolics (TP) and chlorogenic acid (CGA) contents were higher in aerial parts than in roots, with a 3.8-fold increase in TP and a 7.7-fold increase in CGA in foliage with respect to the control plants. Isoorientin was accumulated at very low levels. Antioxidant activity and total phenolic content showed a strong positive correlation. Phenylalanine ammonia-lyase activity (PAL) in aerial parts exhibited significant changes (>twofold) by highest irradiance. C. peltata plants allocate biomass and/or phenolic compounds to compensate the oxidative damage (increase in MDA levels) due to changes in light and nitrate restriction. The results are the basis for the establishment of a system of C. peltata culture in view of the potential use of C. peltata in therapeutic preparations for the treatment of diabetes mellitus.  相似文献   

20.
Petunia × hybrida was grown under high (H), medium (M) and low (L) light intensity [photoperiod; 16 h d−1, photosynthetic photon flux density (PPFD); 360, 120 and 40 μmol m−2 s−1, respectively] as well as under end-of-day (EOD) red (R) and far-red (FR) light quality treatments [photoperiod; 14.5 h d−1, PPFD; 30 μmol m−2 s−1 EOD; 15 min, Control (C) light; without EOD light treatment]. Shoot growth, leaf anatomical and photosynthetic responses as well as the responses of peroxidase (POD) isoforms and their specific activities following transition to flowering (1–6 weeks) were evaluated. Flower bud formation of Petunia × hybrida was achieved at the end of the 4th week for H light treatment and on the end of the 6th week for FR light treatment. No flower bud formation was noticed in the C and R light treatments. H and M light treatments induced lower chlorophyll (Chla, Chlb, Chla+b) concentrations in comparison to L light. On the other hand R and FR light chlorophyll content were similar to C light. Photosynthetic parameters [CO2 assimilation rate (A), transpiration rate (E) and stomatal conductance (g s) values] were higher in the H light treated plants in comparison to M and L light treated plants. A, E and g s values of R and FR light were similar to C light plants. Leaf anatomy revealed that total leaf thickness, thickness of the contained tissues (epidermis, palisade and spongy parenchyma) and relative volume percentages of the leaf histological components were differently affected within the light intensity and the light quality treatments. POD specific activities increased from the 1st to the 6th week during transition to flowering. Native-PAGE analysis revealed the appearance of four anionic POD (A1–A4) isoforms in all light treatments. On the basis of the leaf anatomical, photosynthetic and plant morphological responses, the production of high quality Petunia × hybrida plants with optimal flowering times could be achieved through the control of both light intensity and light quality. The appearance of A1 and A2 anionic POD isoforms could be also used for successful scheduling under light treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号