首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study is to evaluate the oxidative effects of lead with increased concentrations by the determination of antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (AP)) and lipid peroxidation levels in the stem and leaves of watercress (Nasturtium officinale R. Br.) which was exposed to lead acetate, Pb (CH3COOH)2 regime with concentrations of 0, 50, 100, 200, 250, and 500 mg/L Pb in a hydroponic culture. After 14 days, accumulation of lipid peroxidation in stems and leaves and changes in activity of antioxidant enzymes were determined spectrophotometrically. The maximum accumulation was observed in the highest concentration group. In this group, lipid peroxidation levels were three times higher than the control group in the stem and leaves. The highest induction in SOD and GR activities were determined at 200 mg/L Pb group in stem, whereas CAT and AP activities were higher than other groups at the concentration of 250 and 100 mg/L Pb, respectively. The increase in CAT activity was found to be greater than GR, SOD, and AP activities in stems of watercress under Pb treatment. Both lead accumulation and antioxidant enzyme responses were higher in stems than in leaves. The results of the present study suggested that the induction in antioxidant responses could be occurring as an adaptive mechanism to the oxidative potential of lead accumulation.  相似文献   

2.
This study was performed to elucidate the effects of Undaria pinnatifida fucoidan extract (UPFE) in preventing CCl4-induced oxidative stress. UPFE (100 mg/kg) was intraperitoneally administered to rats for 14 days. On day 15, CCl4 dissolved in olive oil (50% CCl4) was injected 12 h before they were anesthetized and dissected. To measure UPFE-mediated antioxidation, we examined the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in serum, as well as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver homogenates. CCl4 treatment markedly increased the levels of GOT, GPT, ALP, LDH, and MDA and significantly decreased levels of SOD, CAT, and GPx. UPFE pretreatment decreased levels of GOT, GPT, ALP, LDH, and MDA, by 62.8, 68.5, 41.9, 72.7, and 122%, respectively and increased those of SOD, CAT, and GPx by 111.1, 15.9, and 52.6%, respectively. These results showed that UPFE has antioxidant effects against CCl4-induced oxidative stress.  相似文献   

3.
Cataract is the opacification in eye lens and leads to 50% of blindness worldwide. The present study was undertaken to evaluate the anticataract potential of Trigonella foenum-graecum Linn seeds (fenugreek) in selenite-induced in vitro and in vivo cataract. In vitro enucleated rat lenses were maintained in organ culture containing Dulbecco’s modified Eagles medium (DMEM) alone or in addition with 100 μM selenite and served as the normal and control groups, respectively. For the test group, the medium was supplemented with selenite and T. foenum-graecum aqueous extract. The lenses were incubated for 24 h at 37°C. After incubation, the lenses were processed for the estimation of reduced glutathione (GSH), lipid peroxidation product (malondialdehyde), and the antioxidant enzymes. In vivo selenite cataract was induced in 9-day-old rats by subcutaneous injection of sodium selenite (25 μmol/kg body weight). Animals in the test group were injected with different doses of aqueous extract of T. foenum-graecum 4 h before the selenite challenge. A fall in GSH and a rise in malondialdehyde levels were observed in control as compared to normal lenses. T. foenum-graecum significantly (P < 0.01) restored glutathione and decreased malondialdehyde levels. A significant restoration in the activities of antioxidant enzymes such as superoxide dismutase (P < 0.01), catalase, (P < 0.01), glutathione peroxidase (P < 0.01), and glutathione-S-transferase (P < 0.01) was observed in the T. foenum-graecum supplemented group as compared to control. In vivo, none of the eyes was found with nuclear cataract in treated group as opposed to 72.5% in the control group. T. foenum-graecum protects against experimental cataract by virtue of its antioxidant properties. Further studies are warranted to explore its role in human cataract.  相似文献   

4.
Two gramineous species among wild plants, Echinochloa oryzicola Vasing and Setaria viridis (L.) Beauv., and Oryza sativa L. cv. Nipponbare were subjected to salt stress. The relative growth rate (RGR), Na content, photosynthetic rate, antioxidant enzymes activity (superoxide disumutase (SOD), catalase (CAT), ascorbate peroxidase (APx) and glutathione reductase (GR)), and malondialdehyde (MDA) content in leaves after NaCl treatment were studied. RGR significantly decreased in O. sativa more than in E. oryzicola and S. viridis. Comparatively salt-tolerant S. viridis showed higher growth rate, lower Na accumulation rate in leaves, higher photosynthetic rate, and induced more SOD, CAT, APx, and GR activity and lower increase of MDA content as compared to the salt-sensitive O. sativa. At the same time, the comparatively salt-tolerant E. oryzicola also showed higher growth rate, much lower Na accumulation and no observable increase of MDA content, even though the CAT and APx activities were not induced by salinity. These results suggested that the scavenging system induced by H2O2-mediated oxidative damage might, at least in part, play an important role in the mechanism of salt tolerance against cell toxicity of NaCl in some gramineous plants  相似文献   

5.
In the present investigation, we studied the possible potentiating effect of salicylic acid (SA) under Cd toxicity in Oryza sativa L. leaves. Cd treatments for 24 h reduced the shoot length, dry biomass and total chlorophyll content followed by high Cd accumulation in shoots. About 16 h presoaking with SA resulted in partial protection against Cd, as observed by minor changes in length, biomass and total chlorophyll. SA priming resulted in low Cd accumulation. Enhanced thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2) and superoxide anion (O2 ) content were seen when Cd was applied alone, while under SA priming the extent of TBARS, H2O2 and O2 were significantly low, suggesting SA-regulated protection against oxidative stress. The antioxidant enzymes like Catalase (CAT), guaiacol peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) showed varied activities under Cd alone. CAT activity increased after Cd treatment, followed by a decline in GPX and GR activity. SOD also declined at the highest concentrations with an initial increase. Under SA-priming conditions, the efficiency of the antioxidant enzymes was significantly elevated. GPx and SOD activity showed significant increase in activity. The ascorbate activity increased after Cd treatment, followed by a decline in glutathione under SA-free condition. SA priming showed gradual increase in these non-enzymic antioxidants. Our results indicate that Cd-induced oxidative stress can be regulated by SA.  相似文献   

6.
Seedlings of two Tunisian Carthamus tinctorius L. provenances (Kairouan and Tazarka) differing in salt sensitivity were hydroponically grown at 0 and 50 mM NaCl over 21 days. Leaves of Kairouan (salt-sensitive) showed a 48% restriction in their growth at 50 mM NaCl although they accumulated less sodium than those of Tazarka (less salt-sensitive) that maintained an unchanged growth. Salt treatment induced oxidative stress in C. tinctorius and the effect was more pronounced in the leaves of the more salt sensitive provenance, Kairouan. Both provenances exhibited a stimulation of antioxidant enzyme activities with higher catalase (CAT) and superoxide dismutase (SOD) activities in Tazarka and higher peroxidase (POD) activity in Kairouan. But, it seems that antioxidant activities were more correlated with polyphenol content. Actually, leaves of Tazarka experienced higher polyphenol and antioxidant activity than Kairouan at 50 mM NaCl. Hence, moderate salinity (3 g NaCl L−1) enhanced bioactive molecule yield in the less salt sensitive provenance, Tazarka. In addition, C. tinctorius was found rich in ascorbic acid, but the moderate salt stress enhanced its production only in the sensitive provenance.  相似文献   

7.
The effects of Zn deficiency on antioxidant responses of two pea (Pisum sativum L.) genotypes, a Zn-efficient IPFD-99-13 and Zn-inefficient KPMR-500, grown in sand culture were studied. In the pea genotype KPMR-500, Zn deficiency decreased dry matter yield, tissue Zn concentration, and antioxidant enzyme activities istronger than in the genotype IPFD-99-13. Genotype IPFD-99-13 developed more efficient antioxidant system to scavenge ROS than genotype KPMR-500. Zinc deficiency produced oxidative damage to pea genotypes due to enhanced accumulation of TBARS and H2O2 and decreased activities of antioxidant enzymes (Cu/Zn superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)). In the leaves of IPFD-99-13 genotype, the higher activity of ROS-scavenging enzyme, e.g., SOD, CAT, POD, and glutathione reductase, and antioxidants, such as ascorbate and non-protein thiols, led to the lower accumulation of H2O2 and lipid peroxides. These results suggest that, by maintaining an efficient antioxidant defense system, the IPFD-99-13 genotype shows a lower sensivity to Zn deficiency than the KPMR-500 genotype.  相似文献   

8.
The effect of proline on the antioxidant system in the leaves of eight species of wild almond (Prunus spp.) exposed to H2O2-mediated oxidative stress was studied. The levels of endogenous proline (Pro) and hydrogen peroxide, and the activities of total superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (POD) were measured. The degradation of chlorophyll but not carotenoids occurred in leaves in the solution of 5 mM H2O2. An increase in membrane lipid peroxidation was observed in H2O2 treatment, as assessed by MDA level and percentage of membrane electrolyte leakage (EL). Significant increases in total SOD and CAT activities, as well as decreases in APX and POD activities, were detected in H2O2-treated leaves. The three SOD isoforms showed different behavior, as Mn-SOD activity was enhanced by H2O2, whereas Fe-SOD and Cu/Zn-SOD activities were inhibited. In addition, Pro accumulation up to 0.1 ??mol/g fr wt, accompanied by significant decreases in ascorbate and glutathione levels, was observed in H2O2-treated leaves. After two different treatments with 10 mM Pro + 5 mM H2O2, total SOD and CAT activities were similar to the levels in control plants, while POD and APX activities were higher if compared to the leaves exposed only to H2O2. Pro + H2O2 treatments also caused a strong reduction in the cellular H2O2 and MDA contents and EL. The results showed that Pro could have a key role in protecting against oxidative stress injury of wild almond species by decreasing membrane oxidative damage.  相似文献   

9.
In this study, physiological, biochemical, and proteomic changes of Alternanthera philoxeroides leaves under zinc stress were investigated. Zinc is an essential micronutrient for plants, but it can be toxic at higher concentrations. Accumulations of zinc and MDA in leaves increased significantly with the increase of zinc concentrations. Zn considerably changed the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). Zn also altered the antioxidant level, such as reduced glutathione (GSH) and ascorbic acid (AsA). Therefore, it seems that zinc induced oxidative stress in the leaves of A. philoxeroides, in which we found enhancement of antioxidant enzyme activities and antioxidant concentrations. Protein profiles analyzed by two-dimensional electrophoresis revealed that five protein spots were up-regulated in zinc-treated samples. These differentially displayed proteins were identified by mass spectrometry. The up-regulation of some antioxidant enzymes and stress-related proteins clearly indicated that excess zinc generates oxidative stress that might be disruptive to other important metabolic processes. These results indicate a good correlation between the physiological and biochemical changes in A. philoxeroides leaves exposed to excess zinc. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 546–554. This text was submitted by the authors in English.  相似文献   

10.
《Journal of Asia》2020,23(2):350-357
Acridids are highly abundant living-organism/major-component in agricultural field, globally. It may act as a dependable bio-indicator species in response to environmental-stress. Antioxidants protect insects by scavenging free radicals. Here, we investigated the dose dependant azadirachtin (C35H44O16 AZT) toxicity on oxidative-biomarker; Alkaline-phosphatase (ALP), malondialdehyde (MDA), non-protein-soluble-thiol (NPSH) and antioxidants like superoxide-dismutase (SOD), catalase (CAT), glutathione-peroxidase (GPx) and amylase of gonads from both sexes and juvenile tissues of common grasshopper, Spathosternum prasiniferum prasiniferum (Walker, 1871). The newly hatched adults (female: male = 1:1) are exposed to 1 to 20 ppm AZT for 48 h and have compared to control and 6 h incubation with same concentration of azadirachtin for in vitro experiments. Both in vivo and in vitro experiment demonstrated significant influences on oxidative biomarkers with increasing antioxidant enzymatic activities in either sex. The male gonads represents decreasing antioxidant enzyme activities compared to female gonads. Lesser protection by CAT and SOD are noticed in male than female in response to AZT exposure. This experiment suggests that azadirachtin increased the major biomarkers with decreasing antioxidant enzyme activities resulting in more free-radicals related threat in adult male gonads. Variable dose responses were noticed on ALP, AchE and MDA in either gender suggesting multiphasic action of the pesticides. Higher mortality rate is noticed in male with lower nymphal life span. Moreover, nymph IInd is more susceptible than nymph IVth in vitro intoxication of azadirachtin. Possible life threat of vast representatives of agricultural ecosystem by pesticide should be avoided to maintain different bio-geo cycle and eco-sustainability.  相似文献   

11.
The effects of long-term NaCl and KCl treatment on plant growth and antioxidative responses were investigated in Chenopodium album, a salt-resistant species widely distributed in semi-arid and light-saline areas of Xinjiang, China. Growth parameters [plant height, branch number, leaf morphology and chlorophyll (Chl) content], the level of oxidative stress [superoxide anion radical (O2 ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations], activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX)], the contents of non-enzymatic antioxidants [carotenoids (Car) and ascorbic acid (AsA)] and expression of selected genes were investigated. Plants were grown in the presence of 0, 50, and 300 mM NaCl or KCl for 2 months. Growth was stimulated by 50 mM NaCl or KCl, maintained stable at 300 mM NaCl, but was inhibited by 300 mM KCl. Three hundred mM NaCl did not affect O2 , H2O2, MDA, Car and AsA, but increased the activities of SOD, CAT and POX compared to the controls. RT-PCR analysis suggested that expression of some genes encoding antioxidant enzymes could be induced during long-term salt stress, which was consistent with the enzyme activities. Treatment with 300 mM KCl was associated with elevated oxidative stress, and significantly decreased Car and AsA contents. These results suggest that an efficient antioxidant machinery is important for overcoming oxidative stress induced by treatment with high NaCl concentrations in C. album. Other strategies of ion regulation may also contribute to the differential tolerance to Na and K at higher concentrations.  相似文献   

12.
The antioxidant status as well as protein composition of faba bean leaves infected with Bean yellow mosaic virus (BYMV) and the effect of salicylic acid application was examined in this paper. Some modifications in the antioxidant status were observed by changing some antioxidant enzymes activities and contents of antioxidant metabolites. BYMV-infected leaves revealed POD, CAT, APX and SOD induced activities while SA treatments could inhibit POD, CAT activities but induced SOD activity. The enzyme activities seemed to be SA concentration dependant. Higher H2O2 and MDA concentrations were recorded in virus-infected leaves than those of the corresponding controls while treatment with SA followed by virus inoculation caused lowering of MDA concentration and reducing the damage due to lipid peroxidation. Moreover, because of virus infection and/or SA treatments, an increase in the amounts of phenolics and flavonoids was noticed. As compared to the control, BYMV infection or SA application caused pronounced increase in the antioxidant activity of leaf extracts detected by DPPH assay, indicating an increase in the amounts of antioxidant compounds occurred. To test the protein composition, the contents of each protein fractions (soluble, insoluble and total) were analyzed and the change in protein patterns was visualized using SDS-PAGE. The BYMV-infected bean leaves had protein contents higher than the control indicating accumulation of pathogenesis-related proteins. Moreover, spraying SA with or without virus inoculation could accumulate soluble, insoluble and total proteins and the pattern of increase was in accordance with SA concentration. Alterations in protein patterns were observed in faba bean leaves (Vicia faba cv Giza 461) in response to BYMV infection and SA treatments. Because of BYMV infection and SA treatments, the protein profiles showed new bands in comparison to the control. Some polypeptides were highly accumulated in treatments of SA followed by virus inoculation. Changing antioxidant status and accumulation of some antioxidant metabolites as well as the pronounced alterations in the protein composition indicate a kind of plant response against pathogen invasion and in case of SA treatment it is considered a way by which a defence response was initiated and/or activated.  相似文献   

13.
Thermotolerance and related antioxidant enzyme activities induced by both heat acclimation and exogenous salicylic acid (SA) application were studied in grapevine (Vitis vinifera L. cv. Jingxiu). Heat acclimation and exogenous SA application induced comparable changes in thermotolerance, ascorbic acid (AsA), glutathione (GSH), and hydrogen peroxide (H2O2) concentrations, and in activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), ascorbic peroxidase (APX) and catalase (CAT) in grape leaves. Within 1 h at 38 °C, free SA concentration in leaves rose from 3.1 μg g−1 FW to 19.1 μg g−1 FW, then sharply declined. SA application and heat acclimation induced thermotolerance were related to changes of antioxidant enzyme activities and antioxidant concentration, indicating a role for endogenous SA in heat acclimation in grape leaves.  相似文献   

14.
This study examined the importance of mycosporine-glycine (Myc-Gly) as a functional antioxidant in the thermal-stress susceptibility of two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata. Photochemical efficiency of PSII (Fv/Fm), activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and composition and abundance of mycosporine-like amino acids (MAAs) in the coral tissue and in symbiotic zooxanthellae were analyzed during 12-h exposure to high temperature (33 °C). After 6- and 12-h exposures at 33 °C, S. pistillata showed a significantly more pronounced decline in Fv/Fm compared to P. ryukyuensis. A 6-h exposure at 33 °C induced a significant increase in the activities of SOD and CAT in both host and zooxanthellae components of S. pistillata while in P. ryukyuensis a significant increase was observed only in the CAT activity of zooxanthellae. After 12-h exposure, the SOD activity of P. ryukyuensis was unaffected in the coral tissue but slightly increased in zooxanthellae, whereas the CAT activity in the coral tissue showed a 2.5-fold increase. The total activity of antioxidant enzymes was significantly higher in S. pistillata than in P. ryukyuensis, suggesting that P. ryukyuensis is less sensitive to oxidative stress than S. pistillata. This differential susceptibility of the corals is consistent with a 20-fold higher initial concentration of Myc-Gly in P. ryukyuensis compared to S. pistillata. In the coral tissue and zooxanthellae of both species investigated, the first 6 h of exposure to thermal stress induced a pronounced reduction in the abundance of Myc-Gly but not in other MAAs. When exposure was prolonged to 12 h, the Myc-Gly pool continued to decrease in P. ryukyuensis and was completely depleted in S. pistillata. The delay in the onset of oxidative stress in P. ryukyuensis and the dramatic increase in the activities of the antioxidant enzymes in S. pistillata, which contains low concentrations of Myc-Gly suggest that Myc-Gly provides rapid protection against oxidative stress before the antioxidant enzymes are induced. These findings strongly suggest that Myc-Gly is functioning as a biological antioxidant in the coral tissue and zooxanthellae and demonstrate its importance in the survival of reef-building corals under thermal stress.  相似文献   

15.
A catalase-deficient mutant (RPr 79/4) and the wild-type (cv. Maris Mink) barley (Hordeum vulgare L.) counterpart, were grown for 3 weeks in high CO2 (0.7%) and then transferred to air and ozone (120 nl 1?1) in the light and shade for a period of 4 days. Leaves and roots were analysed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and glutathione reductase (GR, EC 1.6.4.2) activities. CAT activity in the leaves of the RPr 79/4 catalase-deficient mutant was around 5-10% of that determined in Maris Mink, but in the roots, both genotypes contained approximately the same levels of activity. CAT activity in Maris Mink increased in the leaves after transferring plants from 0.7% CO2 to air or ozone, reaching a maximum of 5-fold, after 4 days in shade and ozone. For the catalase-deficient mutant, only small increases in CAT activity were observed in light/air and light/ozone treatments. In the roots, CAT activity decreased consistently in both genotypes, after plants were transferred from 0.7% CO2. The total soluble SOD activity in the leaves and roots of both genotypes increased after plants were transferred from 0.7% CO2. The analysis of SOD isolated from leaves following non-denaturing PAGE, revealed the presence of up to eight SOD isoenzymes classified as Mn-SOD or Cu/Zn-SODs; Fe-SOD was not detected. Significant changes in Mn- and Cu/Zn-SOD isoenzymes were observed; however, they could not account for the increase in total SOD activity. In leaves, GR activity also increased in Maris Mink and RPr 79/4, following transfer from 0.7% CO2; however, no constant pattern could be established, while in roots, GR activity was reduced after 4 days of the treatments. The data suggest that elevated CO2 decreases oxidative stress in barley leaves and that soluble CAT and SOD activities increased rapidly after plants were transferred from elevated CO2, irrespective of the treatment (light, shade, air or ozone).  相似文献   

16.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

17.
The aim of the study was to determine the effect of the elements of the extract of seed from Emblica officinalis on antioxidant enzymes and osmotic fragility of erythrocytes membrane in normal as well as streptozotocin-induced severely diabetic albino Wister rats. The results revealed that the untreated diabetic rats exhibited increase in oxidative stress as indicated by significantly diminished activities of free radical scavenging enzymes such as catalase (CAT) and superoxide dismutase (SOD) by 37.5% (p < 0.001) and 18.6% (p < 0.01), respectively. However, the E. officinalis seed extract treatment showed marked improvements in CAT and SOD activities by 47.09% (p < 0.001) and 21.61% (p < 0.001), respectively. The enhanced lipid peroxidation by 30.87% (p < 0.001) in erythrocytes of untreated diabetic rats was significantly accentuated in the extract treated animals by 23.72% (p < 0.001). The erythrocytes showed increased osmotic fragility due to diabetes in terms of hemolysis. It attained the normal level in diabetic treated group. The findings thus suggest that E. officinalis seed extract has the potential to be exploited as an agent to boost the antioxidant system in the diabetic animal model. Laser-induced breakdown spectroscopy has been used as an analytical tool to detect major and minor elements like Mg, Fe, Na, K, Zn, Ca, H, O, C, and N present in the extract. The higher concentration of Ca (II), Mg (II) and Fe (II) as reflected by their intensities are responsible for the antioxidant potential of E. officinalis.  相似文献   

18.
Acanthamoeba castellanii (A. castellanii) is an important opportunistic parasite. Induction of oxidative stress by the host immune system is one of the most important defense strategies against parasites. Hence, parasites partly deal with oxidative stress by different mechanisms. Identifying resistance mechanisms of A. castellanii parasites against oxidative stress is important to achieve a new therapeutic approach. Thus, this study aimed to understand the resistance mechanisms of A. castellanii, against oxidative stress. Trophozoites of A. castellanii were treated with different concentrations of H2O2. The half maximal inhibitory concentration (IC50) of H2O2 was determined using the MTT assay. The induction of oxidative stress was confirmed by flow cytometer. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. The gene expression levels of CAT and SOD were measured by qRT-PCR. Furthermore, 3-amino-1:2:4-triazole (3-AT) and potassium cyanide (KCN) were used as specific inhibitors of CAT and SOD, respectively. Cell cycle assay and the apoptosis were evaluated by flow cytometer. The activities of SOD, CAT, GR, and GPx, showed an increase in oxidative stress. The cell cycle analysis revealed that most of the cellular population was in G0 and G1 phases. The apoptosis increased in oxidative stress conditions. Moreover, the apoptosis significantly increased after the specific inhibition of CAT and SOD under oxidative stress. The gene expression levels of CAT and SOD significantly increased under oxidative stress. A. castellanii can resist the host immune system through various mechanisms, including evoking its antioxidant enzymes. Therefore, by reducing or inhibiting the activity of the parasite's antioxidant enzymes such as SOD and CAT, it is possible to cope with A. castellanii.  相似文献   

19.
Copper accumulation, subcellular localization and ecophysiological responses to excess copper were investigated using pot culture experiments with two Daucus carota L. populations, from a copper mine and an uncontaminated field site, respectively. Significant differences of malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX)] activities of leaves under Cu treatment were observed between the two populations. At high Cu concentrations (400 and 800 mg kg−1), a significant increase in contents of MDA and H2O2 but a significant decrease in activities of SOD, CAT and APX were observed in uncontaminated population. Contrarily, the population from copper mine maintained a lower level of MDA and H2O2 but higher activities of SOD, CAT and APX. Copper accumulation in roots and shoots increased significantly with the increase of copper concentrations in soils in the two populations. No significant difference of the total Cu in roots and shoots was found between the two populations at same copper treatment. There were also no striking differences of cell wall-bound Cu and protoplasts Cu of leaves between the two populations. The difference was that Cu concentration in vacuoles of leaves was 1.5-fold higher in contaminated site (CS) population than in uncontaminated site population. Hence, more efficient vacuolar sequestration for Cu and maintaining high activities of SOD, CAT and APX in the CS population played an important role in maintaining high Cu tolerance.  相似文献   

20.
Caper plant (Capparis spinosa) extracts have been associated with diverse biological activities including anti-oxidant properties. In this work, we characterized the hydro-ethanolic extract obtained from C. spinosa leaves [hydroethanolic extract of C. spinosa (HECS)] by analyzing the content in anti-oxidant compounds such as polyphenols, flavonoids and anthocyanins. Further, we evaluated HECS antioxidant activities in vitro using bleaching of 1,1-diphenyl-2-picrylhydrazyl radical and ABTS test as well as by pretreatment of HeLa cells exposed to Fe2+ or H2O2. Our findings indicate that HECS contains high amount of total phenolic compounds and high levels of flavonoids and anthocyanins. Furthermore, HECS exhibited antioxidant activity in both chemical and biological tests. Specially, pretreatment of HeLa cells with different concentrations of the extract conferred protection against lipid peroxidation and modulated activities of two antioxidant enzymes, SOD and catalase. These results revealed HECS antioxidant effects and suggest that C. spinosa leaves are a potential source of natural antioxidant molecules with possible applications in industry and medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号