首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three sets of in silico experiments have been conducted to elucidate the binding mechanics of two drugs, (+)-methamphetamine (METH) and amphetamine (AMP) to the single-chain variable fragment (scFv) recently engineered from anti-METH monoclonal antibody mAb6H4 (IgG, κlight chain, Kd = 11 nM). The first set of in silico experiments are long time equilibration runs of scFv:drug complexes and of drug-free scFv both in the solution. They demonstrate how the solution structures of scFv deviate from its crystallographic form with or without drug molecules bound to it. They lead to the prediction that the Arrhenius activation barrier is nearly zero for transitions from the dissociated state to the bound state. The second set of in silico experiments are nonequilibrium dynamics of pulling the drug molecules out of the binding pocket of scFv and the equilibration runs for drugs to fall back into the binding pocket. They demonstrate that extra water molecules (in addition to the two crystallographic waters) exist inside the binding pocket, underneath the drug molecules. These extra waters must have been evaporated from the binding pockets during the crystallization process of the in vitro experiments of structural determination. The third set of in silico experiments are nonequilibrium steered molecular dynamics simulations to determine the absolute binding free energies of METH and AMP to scFv. The center of mass of a drug molecule (METH or AMP) is steered (pulled) towards (forward) and away from (reverse) the binding site, sampling forward and reverse pulling paths. Mechanic work is measured along the pulling paths. The work measurements are averaged through the Brownian dynamics fluctuation dissipation theorem to produce the free-energy profiles of the scFv:drug complexes as a function of the drug-scFv separation. These experiments lead to the theoretical prediction of absolute binding energies of METH and AMP that are in agreement with the in vitro experimental results.  相似文献   

2.
Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.  相似文献   

3.
Methamphetamine (METH) is a major drug threat in the United States and worldwide. Monoclonal antibody (mAb) therapy for treating METH abuse is showing exciting promise and the understanding of how mAb structure relates to function will be essential for future development of these important therapies. We have determined crystal structures of a high affinity anti-(+)-METH therapeutic single chain antibody fragment (scFv6H4, KD= 10 nM) derived from one of our candidate mAb in complex with METH and the (+) stereoisomer of another abused drug, 3,4-methylenedioxymethamphetamine (MDMA), known by the street name “ecstasy.” The crystal structures revealed that scFv6H4 binds to METH and MDMA in a deep pocket that almost completely encases the drugs mostly through aromatic interactions. In addition, the cationic nitrogen of METH and MDMA forms a salt bridge with the carboxylate group of a glutamic acid residue and a hydrogen bond with a histidine side chain. Interestingly, there are two water molecules in the binding pocket and one of them is positioned for a C—H⋯O interaction with the aromatic ring of METH. These first crystal structures of a high affinity therapeutic antibody fragment against METH and MDMA (resolution = 1.9 Å, and 2.4 Å, respectively) provide a structural basis for designing the next generation of higher affinity antibodies and also for carrying out rational humanization.  相似文献   

4.
Methamphetamine (METH) abuse is a major threat in the USA and worldwide without any FDA approved medications. Anti-METH antibody antagonists block or slow the rate of METH entry into the brain and have shown efficacy in preclinical studies (Peterson, Laurenzana, Atchley, Hendrickson, & Owens, 2008 Peterson, E. C., Laurenzana, E. M., Atchley, W. T., Hendrickson, H. P. and Owens, S. M. 2008. Development and preclinical testing of a high-affinity single-chain antibody against (+)-methamphetamine. Journal of Pharmacology and Experimental Therapeutics, 08: 124133.  [Google Scholar]).?A key determinant of the antibody’s efficacy is its affinity for METH and we attempted to enhance the efficacy by designing mutations to alter the shape or the electrostatic character of the binding pocket. Towards this goal, we developed a single chain anti-METH antibody fragment (scFv6H4) from a parent IgG (1). The crystal structure of scFv-6H4 in complex with METH was determined (Celikel, Peterson, Owens, & Varughese, 2009 Celikel, R., Peterson, E. C., Owens, S. M. and Varughese, K. I. 2009. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse-Methamphetamine and 3,4-methylenedioxymethamphetamine. Protein Science, 09: 23362345.  [Google Scholar]). Based on its elucidated binding interactions, we designed point mutations in the binding pocket to improve its affinity for METH and amphetamine (AMP), the active metabolite of METH. The mutants, scFv-S93T,-I37?M and -Y34?M were cloned, expressed in yeast and tested for affinity against METH and AMP. Two mutants showed enhanced binding affinity for METH: scFv-I37?M by 1.3-fold and scFv-S93T by 2.6-fold. Additionally, all the mutants showed increase in affinity for AMP: scFv-I37?M by 56-fold, scFv-S93T by 17-fold and scFvY34?M by 5-fold. Crystal structure for one of the high-affinity mutant, scFv-S93T, in complex with METH was determined (Figure 1). Binding pocket of the mutant is more hydrophobic in comparison with the wild type. ScFv-6H4 binds METH in a deep pocket containing two water molecules. The substitution of a serine residue by a threonine leads to the expulsion of a water molecule (Figure 2), relieving some unfavorable contacts between the hydrocarbon atoms of METH and the water molecule and increasing the affinity to sub-nanomolar range. Therefore, the present study shows that efficacy could be enhanced by altering the hydrophobicity or the shape of the binding pocket.  相似文献   

5.
Salvinorin A is a naturally occurring hallucinogenic diterpenoid from the plant Salvia divinorumthat selectively and potently activates kappa-opioid receptors (KORs). Salvinorin A is unique in that it is the only known lipid-like molecule that selectively and potently activates a G-protein coupled receptor (GPCR), which has as its endogenous agonist a peptide; salvinorin A is also the only known non-nitrogenous opioid receptor agonist. In this paper, we identify key residues in KORs responsible for the high binding affinity and agonist efficacy of salvinorin A. Surprisingly, we discovered that salvinorin A was stabilized in the binding pocket by interactions with tyrosine residues in helix 7 (Tyr313 and Tyr320) and helix 2 (Tyr119). Intriguingly, activation of KORs by salvinorin A required interactions with the helix 7 tyrosines Tyr312, Tyr313, and Tyr320 and with Tyr139 in helix 3. In contrast, the prototypical nitrogenous KOR agonist U69593 and the endogenous peptidergic agonist dynorphin A (1-13) showed differential requirements for these three residues for binding and activation. We also employed a novel approach, whereby we examined the effects of cysteine-substitution mutagenesis on the binding of salvinorin A and an analogue with a free sulfhydryl group, 2-thiosalvinorin B. We discovered that residues predicted to be in close proximity, especially Tyr313, to the free thiol of 2-thiosalvinorin B when mutated to Cys showed enhanced affinity for 2-thiosalvinorin B. When these findings are taken together, they imply that the diterpenoid salvinorin A utilizes unique residues within a commonly shared binding pocket to selectively activate KORs.  相似文献   

6.
Crystal structures of the 64M-2 antibody Fab fragment complexed with DNA photoproducts of dT(6-4)T and dTT(6-4)TT, and of the 64M-3 Fab fragment complexed with dT(6-4)T were determined. The 5'-thymine base of the bound dT(6-4)T ligand is in a half-chair conformation, and its base plane is nearly perpendicular to the planar 3'-pyrimidone base. The 64M-2 and 64M-3 Fabs have a common structure suitable for accommodating the dT(6-4)T ligand. In each of the antigen binding sites of the 64M-2 and 64M-3 Fabs, basic residues of His 35H and Arg 95H are located at the bottom of the binding pocket, and are hydrogen-bonded to the base moieties of dT(6-4)T. Two water molecules are involved in the interactions that intervene between the base moieties and the binding site. Aromatic residues of Trp 33H and Tyr 100iH form a side-wall of the pocket and are in van der Waals interactions with the base moieties. The Trp 33H side-chain is placed in parallel to the 3'-pyrimidone base, and the Tyr 100iH side-chain is nearly perpendicular to the 5'-thymine base. His 27dL, Tyr 32L, Leu 93L, and Ser 58H forming another side-wall are located in the vicinity of the sugar-phosphate backbone. In the 64M-2 Fab complex with dTT(6-4)TT, 5'- and 3'-side phosphate groups are also involved in interaction with Fab residues.  相似文献   

7.
The complex formed by bovine trypsinogen and the pancreatic trypsin inhibitor crystallizes in large crystals isomorphous with trypsin-PTI2 complex crystals Rühlmann et al. 1973. X-ray diffraction data to 1.9 Å resolution were collected in the absence and presence of Ile-Val dipeptide. Both trypsinogen complex structures have been crystallographically refined, using the refined trypsin-PTI complex Huber et al. 1974a as a starting model. The final R values are 0.25 and 0.26, respectively. The mean main-chain atom deviations between the three complex structures are about 0.15 Å. In contrast, the mean deviation between the complexed and the free trypsinogen Fehlhammer et al. 1977 is 0.28 Å, reflecting the influence of crystal packing and complexation. The trypsinogen component adopts a trypsin-like conformation upon PTI binding: The Asp194 side-chain turns around and the activation domain becomes rigid, forming the specificity pocket and the Ile16 binding cleft. The specific interactions between PTI and trypsin are also observed in the trypsinogen complex. As in free trypsinogen, the N-terminus including residues Val10 to Gly18 is mobile and sticks out into solution. Apart from the different arrangement of the N-termini in the two complexes, the only significant, but minor structural difference is the enhanced thermal mobility of the autolysis loop in the trypsinogen complex. Upon binding of the Ile-Val dipeptide, the autolysis loop becomes fixed as in the trypsin complex. The Ile-Val position is identical in the ternary and the trypsin complex.  相似文献   

8.
Computer-aided search for novel anti-HIV-1 agents that are able to imitate the pharmacophore properties of the antigen-binding site of a broadly neutralizing mAb 3074 against the envelope gp120 V3 loop was carried out followed by evaluation of their potential inhibitory activity by molecular modeling. In doing so, the following problems were solved: (1) the mAb 3074 amino acid residues responsible for specific binding to the HIV-1 V3 loop were identified from the X-ray structures of this antibody Fab in complexes with the MN, UR29, and VI191 V3 peptides (Jiang et al., 2010); (2) using these data, 2039 possible mAb-3074 peptidomimetics were found by pepMMsMIMIC presenting a public, web-oriented virtual screening platform (Floris et al., 2011); (3) the complexes of these compounds with the above V3 peptides were built by molecular docking and, based on their analysis, the four molecules exhibiting a high affinity to V3 in the in silico studies were selected as the most probable peptidomimetics of mAb 3074 (Figure 1); and (4) stability of the complexes of these molecules with the MN, UR29, and VI191 V3 peptides was estimated by molecular dynamics and free energy simulations. As a result, a key role in specific binding of the selected compounds to the V3 loop was shown to belong to π-π interactions between their aromatic rings and the conserved Phe20 and/or Tyr21 of the V3 immunogenic crown. Similarly to mAb 3074, these compounds were found to block the tip of the V3 loop forming its invariant structural motif, which contains residues critical for cell tropism (Andrianov et al., 2011; Andrianov et al., 2012). In addition, the complexes of interest do not undergo significant changes within the molecular dynamics calculations, exhibiting the low values of free energy of their formation. In this context, the compounds given in Figure 1 are considered as the promising basic structures for the design of novel, potent, and broad anti-HIV-1 drugs.  相似文献   

9.
Yi H  Qiu S  Cao Z  Wu Y  Li W 《Proteins》2008,70(3):844-854
Inhibitory peptide-channel interactions have been utilized to characterize both channels and peptides; however, the fundamental basis for these interactions remains elusive. Here, combined computation methods were employed to study the specific binding of maurotoxin (MTX) peptide to Kv1.2 channel. In the first stage, numerous predicted complexes were generated by docking an ensemble of all 35 NMR conformations of MTX to Kv1.2 channel with ZDOCK program. Then the resulted complexes were clustered and classified into four main binding modes, based on experimental information and interaction energy analysis after the energy minimization and molecular dynamics (MD) simulations. By examining the stability of the plausible candidates through unrestrained MD simulations and calculation of the binding free energies, a final reasonable MTX-Kv1.2 complex was identified, with an overall high degree of correlation between the calculation and experiment on mutational effects. In the obtained complex structure model, MTX mainly used its beta-sheet domains to associate the channel mouth instead of the well-recognized functionally important S5P linkers of Kv1.2 channel. Structure analysis characterized that the most essential Tyr(32) residue of MTX was surrounded by a "pocket" formed by many nonpolar and polar residues of Kv1.2 channel, and revealed a pore-blocking Lys(23) and an important Lys(7) stabilized by strong electrostatic interactions with Asp(379) of Kv1.2. Furthermore, a stepwise structural arrangement for both ligand and receptor was found to accompany the tighter interaction of MTX into the target channel. The starting conformation of MTX, the side-chain conformation of the most important residue Tyr(32), and proper introduction of flexibility for candidate complexes were demonstrated to be considerably important factors for obtaining the final reasonable complex structure model. All these findings should not only be helpful for identifying more plausible K(+) channel-inhibitory peptide complex structures, but also provide intrinsically valuable structural biology information to interpret binding affinities, specificities, and diversity of K(+) channel-nature toxin interactions.  相似文献   

10.
S Kotani  G Kawai  S Yokoyama  H Murofushi 《Biochemistry》1990,29(43):10049-10054
An amino acid sequence essential for microtubule-associated proteins (MAPs) to bind to microtubules is presented [Aizawa et al. (1989) J. Biol. Chem. 264, 5885-5890]. A synthetic peptide of 23 amino acid residues which corresponded to the sequence [tubulin binding peptide (TBP)] was active in binding to tubulin and inducing its assembly. The TBP-tubulin interaction mechanism was analyzed by proton nuclear magnetic resonance spectroscopy as a simplified model for MAP-microtubule interactions. Intraresidue transferred nuclear Overhauser effects (TRNOEs) of TBP in TBP-tubulin mixtures were analyzed, and strong binding of two Val and two Lys residues of TBP to tubulin was detected. Among the sharply peaked signals from tubulin aromatic residues, those due to Tyr ring protons broadened upon mixing with TBP, suggesting the involvement of Tyr residue(s) in the binding with TBP. Irradiation of the tubulin Tyr protons resulted in an intermolecular TRNOE at TBP methyl proton resonances. Evidently, hydrophobic interactions between Val and Tyr residues are important for the binding of TBP to tubulin. Hydrophobic interactions have not been taken into account previously in the widely accepted electrostatic model for the binding of MAPs to microtubules.  相似文献   

11.
The endonuclease activity of the bacterial colicin 9 enzyme is controlled by the specific and high‐affinity binding of immunity protein 9 (Im9). Molecular dynamics simulation studies in explicit solvent were used to investigate the free energy change associated with the mutation of two hot‐spot interface residues [tyrosine (Tyr): Tyr54 and Tyr55] of Im9 to Ala. In addition, the effect of several other mutations (Leu33Ala, Leu52Ala, Val34Ala, Val37Ala, Ser48Ala, and Ile53Ala) with smaller influence on binding affinity was also studied. Good qualitative agreement of calculated free energy changes and experimental data on binding affinity of the mutations was observed. The simulation studies can help to elucidate the molecular details on how the mutations influence protein–protein binding affinity. The role of solvent and conformational flexibility of the partner proteins was studied by comparing the results in the presence or absence of solvent and with or without positional restraints. Restriction of the conformational mobility of protein partners resulted in significant changes of the calculated free energies but of similar magnitude for isolated Im9 and for the complex and therefore in only modest changes of binding free energy differences. Although the overall binding free energy change was similar for the two Tyr–Ala mutations, the physical origin appeared to be different with solvation changes contributing significantly to the Tyr55Ala mutation and to a loss of direct protein–protein interactions dominating the free energy change due to the Tyr54Ala mutation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand.  相似文献   

13.
The complex formed by porcine pancreatic kallikrein A with the bovine pancreatic trypsin inhibitor (PTI) has been crystallized at pH 4 in tetragonal crystals of space group P41212 with one molecule per asymmetric unit. Its crystal structure has been solved applying Patterson search methods and using a model derived from the bovine trypsin-PTI complex (Huber et al., 1974) and the structure of porcine pancreatic kallikrein A (Bode et al., 1983). The kallikrein-PTI model has been crystallographically refined to an R-value of 0·23 including X-ray data to 2·5 Å.The root-mean-square deviation, including all main-chain atoms, is 0·45 Å and 0·65 Å for the PTI and for the kallikrein component, respectively, compared with the refined models of the free components. The largest differences are observed in external loops of the kallikrein molecule surrounding the binding site, particularly in the C-terminal part of the intermediate helix around His172. Overall, PTI binding to kallikrein is similar to that of the trypsin complex. In particular, the conformation of the groups at the active site is identical within experimental error (in spite of the different pH values of the two structures). Ser195 OG is about 2·5 Å away from the susceptible inhibitor bond Lys15 C and forms an optimal 2·5 Å hydrogen bond with His57 NE.The PTI residues Thr11 to Ile18 and Val34 to Arg39 are in direct contact with kallikrein residues and form nine intermolecular hydrogen bonds. The reactive site Lys15 protrudes into the specificity pocket of kallikrein as in the trypsin complex, but its distal ammonium group is positioned differently to accommodate the side-chain of Ser226. Ser226 OG mediates the ionic interaction between the ammonium group and the carboxylate group of Asp189. Model-building studies indicate that an arginine side-chain could be accommodated in this pocket. The PTI disulfide bridge 14–38 forces the kallikrein residue Tyr99 to swing out of its normal position. Model-building experiments show that large hydrophobic residues such as phenylalanine can be accommodated at this (S2) site in a wedge-shaped hydrophobic cavity, which is formed by the indole ring of Trp215 and by the phenolic side-chain of Tyr99, and which opens towards the bound inhibitor/substrate chain. Arg17 in PTI forms a favorable hydrogen bond and van der Waals' contacts with kallikrein residues, whereas the additional hydrogen bond formed in the trypsin-PTI complex between Tvr39 OEH and Ile19 N is not possible The kallikrein binding site offers a qualitative explanation of the unusual binding and cleavage at the N-terminal Met-Lys site of kininogen. Model-building experiments suggest that the generally restricted capacity of kallikrein to bind protein inhibitors with more extended binding segments might be explained by steric hindrance with some extruding external loops surrounding the kallikrein binding site (Bode et al., 1983).  相似文献   

14.
The femtomolar-affinity mutant antibody (4M5.3) generated by directed evolution is interesting because of the potential of antibody engineering. In this study, the mutant and its wild type (4-4-20) were compared in terms of antigen-antibody interactions and structural flexibility to elucidate the effects of directed evolution. For this purpose, multiple steered molecular dynamics (SMD) simulations were performed. The pulling forces of SMD simulations elucidated the regions that form strong attractive interactions in the binding pocket. Structural analysis in these regions showed two important mutations for improving attractive interactions. First, mutation of Tyr102(H) to Ser (sequence numbering of Protein Data Bank entry 1FLR ) played a role in resolving the steric hindrance on the pathway of the antigen in the binding pocket. Second, mutation of Asp31(H) to His played a role in resolving electrostatic repulsion. Potentials of mean force (PMFs) of both the wild type and the mutant showed landscapes that do not include obvious intermediate states and go directly to the bound state. These landscapes were regarded as funnel-like binding free energy landscapes. Furthermore, the structural flexibility based on the fluctuations of the positions of atoms was analyzed. It was shown that the fluctuations in the positions of the antigen and residues in contact with antigen tend to be smaller in the mutant than in the wild type. This result suggested that structural flexibility decreases as affinity is improved by directed evolution. This suggestion is similar to the relationship between affinity and flexibility for in vivo affinity maturation, which was suggested by Romesberg and co-workers [Jimenez, R., et al. (2003) Proc. Natl. Acad. Sci. U.S.A.100, 92-97]. Consequently, the relationship was found to be applicable up to femotomolar affinity levels.  相似文献   

15.
The exopeptidase carboxypeptidase A forms a tight complex with a 39 residue inhibitor protein from potatoes. We have determined the crystal structure of this complex, and refined the atomic model to a crystallographic R-factor of 0.196 at 2.5 Å resolution. The structure of the inhibitor protein is organized around a core of disulfide bridges. No α-helices or β-sheets are present in this protein, although there is one turn of 310 helix. The four carboxy-terminal residues of the inhibitor protein bind in the active site groove of carboxypeptidase A, defining binding subsites S′1, S1, S2 and S3 on the enzyme. The carboxy-terminal glycine of the inhibitor is cleaved from the remainder of the inhibitor in the complex, and remains trapped in the back of the active site pocket. Interactions between the inhibitor and residues Tyr248 and Arg71 of carboxypeptidase A resemble possible features of binding stages for substrates both prior and subsequent to peptide bond hydrolysis. Not all of these interactions would be available to different types of ester substrates, however, which may be in part responsible for the observed kinetic differences in hydrolysis between peptides and various classes of esters. With the exception of residues involved in the binding of the inhibitor protein (such as Tyr248), the structure of carboxypeptidase A as determined in the inhibitor complex is quite similar to the structure of the unliganded enzyme (Lipscomb et al., 1968), which was solved from an unrelated crystal form.  相似文献   

16.
Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that might be possible when inhibitors bind to the enzyme cofactor complex, were constructed. The binding of the two alcohol competitive inhibitors were studied using automatic docking by the Internal Coordinate Mechanics program, molecular dynamic (MD) simulations with the AMBER program package, calculation of the free energy of ligand binding by the linear interaction energy method, and the hydropathic interactions force field. The calculations indicated that deprotonated Tyr acts as a strong base in the binary enzyme-NAD+ complex. Molecular dynamic simulations for 5 ns confirmed that deprotonated Tyr is essential for anchoring and orientating the inhibitors at the active site, which might be a general trend for the family of SDRs. The findings here have implications for the development of therapeutically important SDR inhibitors.  相似文献   

17.
HLA-B*4006 is the most common allele amongst Indians. It belongs to the 'HLA-B44 supertype' family of alleles that constitute an important component of the peptide binding repertoire in populations world over. Its peptide binding characteristics remain poorly examined. The amino acid sequence and structural considerations suggest a small, poorly hydrophobic 'F' pocket for this allele that may adversely affect the interaction with the C terminal residue of the antigenic peptide. Contribution of auxiliary anchor residues (P3) of the peptide has also been indicated. To examine these aspects by in silico analysis, HLA-B*4001, 4002, and 4006 alleles were modeled using HLA-B*4402 as a template. Eleven peptides, known to bind alleles of this family, were used for docking and molecular dynamics studies. Interaction between the amino group (main-chain) of P3 residue and Tyr99 of the alleles was seen in majority of peptide-complexes. Hydrophobic interactions between Tyr7 and Tyr159 with N terminal residues of the peptide were also seen in all the complexes. Replacement of Trp95 by leucine in HLA-B*4006 resulted in reduction of binding free energy in 8 out of 9 complexes. In summary, the analysis of the modeled structures and HLA-peptide complexes strongly supports the adverse effect of Trp95 at pocket F and the possible role of the third residue of the antigenic peptide as an auxiliary anchor in HLA-B*4006 peptide complexes. In the light of suggested promiscuous peptide binding pattern and association with risk for tuberculosis/HIV for this allele, the ascertainment of the predicted effects of Trp95 and role of P3 residue as an auxiliary anchor by this preliminary in silico analysis thus helps define direction of the further studies.  相似文献   

18.
Here, we examine the thermodynamic penalty arising from burial of a polar group in a hydrophobic pocket that forms part of the binding-site of the major urinary protein (MUP-I). X-ray crystal structures of the complexes of octanol, nonanol and 1,8 octan-diol indicate that these ligands bind with similar orientations in the binding pocket. Each complex is characterised by a bridging water molecule between the hydroxyl group of Tyr120 and the hydroxyl group of each ligand. The additional hydroxyl group of 1,8 octan-diol is thereby forced to reside in a hydrophobic pocket, and isothermal titration calorimetry experiments indicate that this is accompanied by a standard free energy penalty of +21 kJ/mol with respect to octanol and +18 kJ/mol with respect to nonanol. Consideration of the solvation thermodynamics of each ligand enables the "intrinsic" (solute-solute) interaction energy to be determined, which indicates a favourable enthalpic component and an entropic component that is small or zero. These data indicate that the thermodynamic penalty to binding derived from the unfavourable desolvation of 1,8 octan-diol is partially offset by a favourable intrinsic contribution. Quantum chemical calculations suggest that this latter contribution derives from favourable solute-solute dispersion interactions.  相似文献   

19.
Speranskiy K  Kurnikova M 《Biochemistry》2005,44(34):11508-11517
Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.  相似文献   

20.
Treatments specific to the medical problems caused by methamphetamine (METH) abuse are greatly needed. Toward this goal, we are developing new multivalent anti-METH antibody fragment-nanoparticle conjugates with customizable pharmacokinetic properties. We have designed a novel anti-METH single chain antibody fragment with an engineered terminal cysteine (scFv6H4Cys). Generation 3 (G3) polyamidoamine dendrimer nanoparticles were chosen for conjugation due to their monodisperse properties and multiple amine functional groups. ScFv6H4Cys was conjugated to G3 dendrimers via a heterobifunctional PEG cross-linker that is reactive to a free amine on one end and a thiol group on the other. PEG modified dendrimers were synthesized by reacting the PEG cross-linker with dendrimers in a stoichiometric ratio of 11:1, which were further reacted with 3-fold molar excess of anti-METH scFv6H4Cys. This reaction resulted in a heterogeneous mix of G3-PEG-scFv6H4Cys conjugates (dendribodies) with three to six scFv6H4Cys conjugated to each dendrimer. The dendribodies were separated from the unreacted PEG modified dendrimers and scFv6H4Cys using affinity chromatography. A detailed in vitro characterization of the PEG modified dendrimers and the dendribodies was performed to determine size, purity, and METH binding function. The dendribodies were found to have affinity for METH identical to that of the unconjugated scFv6H4Cys in saturation binding assays, whereas the PEG modified dendrimers had no affinity for METH. These data suggest that an anti-METH scFv can be successfully conjugated to a PEG modified dendrimer nanoparticle with no adverse effects on METH binding properties. This study is a critical step toward preclinical characterization and development of a novel nanomedicine for the treatment of METH abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号