首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate the functional significance of accessory cells in freshwater fishes, such as the rainbow trout, which displays a poor adaptability to seawater life, a search for such cells was performed in two stenohaline freshwater fishes: the loach and the gudgeon. Accessory cells were never encountered in these species; but, in contrast, two types of chloride cells were observed consistently that strikingly resembled the alpha- and beta-cells previously described in the guppy, a freshwater-adapted euryhaline fish. The alpha-cell, a pale and elongated chloride cell, was located at the base of the secondary lamellae in close contact with the arterioarterial pillar capillary. Darker, ovoid chloride cells resembling the beta-cell were found exclusively in the interlamellar region of the primary epithelium facing the central venous sinous. The latter cells frequently formed multicellular complexes linked together by deep, narrow, apical junctions. In another experiment, a stenohaline seawater fish, the turbot, was adapted to diluted 5% saltwater and to fresh water. In seawater, the gill epithelium contained only one type of chloride cell, always associated with accessory cells. Due to numerous cytoplasmic interdigitations between the accessory cells and the apical portion of the chloride cell, there was a noticeable increase in the length of the shallow apical junction, sealing off the intercellular space between the two cell types. In 5% saltwater, there was a decrease in the number of these interdigitations and a concomitant decrease in the length of the shallow apical junction. In fresh water, chloride cells were partially or completely separated from the outside medium by modified accessory cells. It is thus concluded that accessory cells are found exclusively in fish living in seawater or preadapted to seawater and that they probably are involved in the formation and modulation of paracellular pathways for ionic excretion. In contrast, the respective roles of the two types of chloride cells observed in freshwater fishes are still to be determined.  相似文献   

2.
To elucidate the ultrastructural modifications of the gill epithelium during smoltification, gills of the Atlantic salmon (Salmo salar) were examined by electron microscopy at three stages of this process, which were defined as follows: "parrs" were freshwater fish that had not yet started their transformation; "freshwater smolts" were freshwater fish that were ready to enter seawater; and "seawater smolts" were smolts that had been transferred from fresh water and maintained for 4 days in seawater (35%). In the gill epithelium of parrs, there were two types of chloride cells. The large chloride cells contained deeply stained mitochondria and numerous apical, irregular, dense, membrane-bound bodies that formed 77% of the chloride cell population and were distinguished easily from small chloride cells that have distinctly paler mitochondria and no dense bodies in their apical cytoplasm. In freshwater smolts, the large chloride cells formed 95% of the chloride-cell population. In contrast to the small chloride cells that were not modified, they almost doubled in size. Their tubular system developed extensively to form a tight network with regular meshes significantly smaller than those observed in parr chloride cells. Forty percent of the large chloride cells were associated with a new type of cell, the accessory cell, to which they were bound by shallow apical junctions. Half of these accessory cells were not seen to be in contact with the external medium. In seawater smolts, 80% of the large chloride cells were associated with accessory cells. Most accessory cells reached the external medium and sent numerous cytoplasmic interdigitations within the apical portion of the adjacent chloride cells. As a result, a section through the apical portion of the chloride cells and their associated accessory cells revealed a mosaic of interlocked cell processes bound together by an extended, shallow apical junction. It was concluded that the Atlantic salmon develops in fresh water most of the ultrastructural modifications of the gill epithelium which in most euryhaline fish are triggered by exposure to seawater. The effective transfer into seawater would act only as a final stimulus to achieve some adequacy between the freshwater smolt and its new environment.  相似文献   

3.
Two types of chloride cells were identified in the gill epithelium of freshwater-adapted guppies. One type, referred to as an "alpha-chloride cell," was a pale, elongated cell located at the base of the secondary lamella in close contact with the arterioarterial pillar capillaries. In its cytoplasm, membranous tubules in continuity with its basolateral plasma membrane formed an extended tridimensional network. The vesiculotubular system (Pisam: Anat. Rec. 200:401-414, 1981) consisted of a few tubules and vesicles located next to the apical plasma membrane. A second type, referred to as a "beta-chloride cell," was a darker, ovoid cell located in the interlamellar region of the primary epithelium facing the central venous sinus. Membranous tubules in continuity with the basolateral plasma membrane were unevenly distributed in the cytoplasm. A prominent vesiculotubular system composed of numerous vesicles and tubules was found between the Golgi apparatus and the apical surface. During seawater adaptation, the alpha-chloride cells increased in size and progressively transformed into characteristic "seawater alpha-chloride cells" with a well-developed, regular, tight tubular network and numerous vesicles and tubules of the vesiculotubular system accumulated below the apical pit. The beta-chloride cells underwent a progressive degeneration and disappeared. Thus, in freshwater-adapted guppies, there are two types of chloride cells, alpha and beta, respectively, related to the arterial and the venous vessels, whereas in seawater-adapted fishes, a single type of cell, the alpha-chloride cell, was related to both the arterial and venous channels.  相似文献   

4.
Summary Tissue slices from seawater-adapted and freshwater-adapted rainbow trout, Oncorhynchus mykiss, were exposed to 125I-angiotensin II (1.01·10-9 M) and binding sites located by light-microscopic autoradiography. Binding/uptake was significantly inhibited by excess (10-5 M) unlabelled angiotensin II, suggesting specific binding/uptake of angiotensin II to the ventral and dorsal aorta (smooth muscle), urinary bladder (smooth muscle and epithelial lining), glomeruli and proximal tubules, the gill (lamellae and central filament), skin (epithelium), intestine and oesophagus (mucosal epithelium), liver, heart (ventricular myocytes), adrenocortical tissue and brain (cerebellum and medulla oblongata). The specific binding/uptake of angiotensin II to tissues of freshwater- and seawater-adapted animals were generally similar. However, binding/uptake by the proximal tubules was significantly higher in freshwater-adapted trout than seawater-adapted trout. Specific binding/uptake of angiotensin II by the smooth muscle of the bladder was significantly higher in trout adapted to seawater than trout adapted to freshwater.  相似文献   

5.
Sockeye salmon were transferred rapidly from freshwater to seawater and the changes in gill morphology, in particular the distribution and sizes of chloride and mucous cells on the afferent filamental surface examined. Salmon that successfully adapted to seawater were compared with salmon that did not adapt to seawater and died as a consequence of osmoregulatory failure. The number of mucus cells (density), determined from scanning electron microscopy, increased significantly after seawater challenge. A greater increase in mucus cell density occurred in the salmon that failed to adapt to seawater. Light microscopy of transverse sections of gills detected no difference in mucus cell numbers after seawater challenge. It is proposed that mucus cells that lie just beneath the gill epithelium are activated in response to the seawater challenge, and migrate and open onto the epithelium. Freshwater-adapted salmon that had low densities of chloride cells prior to the seawater challenge failed to adapt, whereas salmon that had high densities of chloride cells adapted successfully to seawater. In the latter, the density of chloride cells on the afferent surface decreased after 30 days in seawater. The apical surface of the chloride cells of freshwater-adapted sockeye were either smooth or covered with microvilli. A greater proportion of microvilli-covered chloride cells occurred in the freshwater-adapted salmon that subsequently adapted to seawater.  相似文献   

6.
Summary The effect of angiotensin infusion on the glomerular ultrastructure of freshwater- and seawater-adapted rainbow trout, Salmo gairdneri, has been examined by scanning and transmission electron microscopy. Adaptation of trout to seawater resulted in epithelial podocyte flattening, primary process broadening and apparent loss of foot processes in almost all glomeruli, features which were uncommon in freshwater-adapted trout. Similar changes were induced by infusion of freshwater-adapted animals with angiotensin, suggesting that the renin-angiotensin system plays a role in the modification of glomerular epithelial ultrastructure. Adaptation of trout to seawater also reduced glomerular diameter, but infusion of freshwater-adapted animals with angiotensin did not mirror this effect. Infusion of angiotensin into seawater-adapted animals increased the overall thickness of glomerular basement membrane by increasing the lamina rara interna and lamina densa. This did not occur when freshwater-adapted fish were either infused with angiotensin or adapted to seawater. These findings suggest that other humoral systems are involved in the control of glomerular diameter and basement membrane thickness as part of an integrated response to increased environmental salinity.  相似文献   

7.
In freshwater-acclimated rainbow trout a single intraperitoneal injection of ovine TSH significantly elevated plasma thyroxine (T4) levels within 1 h after the injection. In seawater adapted trout the increase in T4 after TSH-treatment was not evident until 6 h after the injection. TSH caused a transient fall in plasma Na+ and Cl- between 3 h and 9 h after the injection in seawater-adapted fish and plasma Na+ was lowered in freshwater-adapted trout 24 h after the injection. Although there were clear histological changes in the thyroid gland of freshwater-adapted trout after TSH-injection, no such changes were evident in seawater-adapted fish.
Plasma thyroid hormone levels and thyroid histology in freshwater-adapted rainbow trout and coho salmon transferred to sea water, and seawater-adapted trout transferred to fresh water showed no consistent changes compared with controls.
The data are interpreted to indicate that although ambient salinity may have indirect effects on thyroid activity there is no direct involvement in ionic or osmotic regulation in the two species.  相似文献   

8.
Acid-base regulation in fishes: cellular and molecular mechanisms   总被引:6,自引:0,他引:6  
The mechanisms underlying acid-base transfers across the branchial epithelium of fishes have been studied for more than 70 years. These animals are able to compensate for changes to internal pH following a wide range of acid-base challenges, and the gill epithelium is the primary site of acid-base transfers to the water. This paper reviews recent molecular, immunohistochemical, and functional studies that have begun to define the protein transporters involved in the acid-base relevant ion transfers. Both Na(+)/H(+) exchange (NHE) and vacuolar-type H(+)-ATPase transport H(+) from the fish to the environment. While NHEs have been thought to carry out this function mainly in seawater-adapted animals, these proteins have now been localized to mitochondrial-rich cells in the gill epithelium of both fresh and saltwater-adapted fishes. NHEs have been found in the gill epithelium of elasmobranchs, teleosts, and an agnathan. In several species, apical isoforms (NHE2 and NHE3) appear to be up-regulated following acidosis. In freshwater teleosts, H(+)-ATPase drives H(+) excretion and is indirectly coupled to Na(+) uptake (via Na(+) channels). It has been localized to respiratory pavement cells and chloride cells of the gill epithelium. In the marine elasmobranch, both branchial NHE and H(+)-ATPase have been identified, suggesting that a combination of these mechanisms may be utilized by marine elasmobranchs for acid-base regulation. An apically located Cl(-)/HCO(3)(-) anion exchanger in chloride cells may be responsible for base excretion in fresh and seawater-adapted fishes. While only a few species have been examined to date, new molecular approaches applied to a wider range of fishes will continue to improve our understanding of the roles of the various gill membrane transport processes in acid-base balance.  相似文献   

9.
10.
Synopsis The architecture of the gill structure of variousTilapia species was studied in relation to their adaptability to hypersaline media. Using SEM and EM, it was shown that the squamose epithelial cells of the gills have species-typical patterns of ridges on their outer surfaces. These have previously been misinterpreted by other authors as microvilli or stereocillia. The ridges are more dense and better developed in euryhaline species, likeT. zillii, and less so in stenohaline species likeSarotherodon niloticus. Comparing freshwater and seawater-adapted individuals ofT. zillii, S. niloticus, S. galflaeus, andTristramella sacra, it was shown that in fresh water the surface cells are slightly swollen, extending over the openings of the chloride cells. During adaptation to sea water, these ridges become higher and denser and the cell surface shrinks, exposing the underlying orifices of the apical crypts of the chloride cells. The more euryhaline the species, the less change there is in the ridge pattern of the cells during passage from fresh to sea water. This evidence implicates the gill epithelium, together with the chloride cells, in the process of osmoregulation.  相似文献   

11.
The kidney plays an important role in ion regulation in both freshwater and seawater fish. However, ion transport mechanisms in the teleost kidney are poorly understood, especially at the molecular level. We have cloned a kidney-specific SLC26 sulfate/anion exchanger from rainbow trout (Oncorhynchus mykiss) that is homologous to the mammalian SLC26A1 (Sat-1). Excretion of excess plasma sulfate concentration after Na2SO4 injection corresponded to significantly higher expression of the cloned SLC26A1 mRNA. Detailed morphological observation of rainbow trout renal tubules was also performed by light microscopy and transmission electron microscopy. According to the structure of brush border and tubular system in the cytoplasm, renal tubules of rainbow trout were classified into proximal tubule first and second (PI and PII) segments and distal tubules. In situ hybridization revealed that SLC26A1 anion exchanger mRNA is specifically localized in the PI segment of kidneys from both seawater- and freshwater-adapted rainbow trout. With immunocytochemistry, Na+-K+-ATPase and vacuolar-type H+-ATPase were colocalized to the same cells and distributed in the basolateral and the apical membranes, respectively, of the cells where the SLC26A1 mRNA expressed. These findings suggest that the cloned kidney-specific SLC26A1 is located in kidney proximal tubules and is involved in excretion of excess plasma sulfate in rainbow trout.  相似文献   

12.
Various species of teleostean fishes were adapted to fresh or salt water and their gill surface epithelium was examined using several techniques of electron microscopy. In both fresh and salt water the branchial epithelium is mostly covered by flat respiratory cells. They are characterized by unusual outer membrane fracture faces containing intramembranous particles and pits in various stages of ordered aggregation. Freeze fracture studies showed that the tight junctions between respiratory cells are made of several interconnecting strands, probably representing high resistance junctions. The organization of intramembranous elements and the morphological characteristics of the junctions do not vary in relation to the external salinity. Towards the base of the secondary gill lamellae, the layer of respiratory cells is interrupted by mitochondria-rich cells ("chloride cells"), also linked to respiratory cells by multistranded junctions. There is a fundamental reorganization of the chloride cells associated with salt water adaptation. In salt water young adjacent chloride cells send interdigitations into preexisting chloride cells. The apex of the seawater chloride cell is therefore part of a mosaic of sister cells linked to surrounding respiratory cells by multistranded junctions. The chloride cells are linked to each other by shallow junctions made of only one strand and permeable to lanthanum. It is therefore suggested that salt water adaptation triggers a cellular reorganization of the epithelium in such a way that leaky junctions (a low resistance pathway) appear at the apex of the chloride cells. Chloride cells are characterized by an extensive tubular reticulum which is an extension of the basolateral plasma membrane. It is made of repeating units and is the site of numerous ion pumps. The presence of shallow junctions in sea water-adapted fish makes it possible for the reticulum to contact the external milieu. In contrast in the freshwater-adapted fish the chloride cell's tubular reticulum is separated by deep apical junctions from the external environment. Based on these observations we discuss how solutes could transfer across the epithelium.  相似文献   

13.
Natriuretic peptide receptors mediate the physiological response of natriuretic peptide hormones. One of the natriuretic peptide receptor types is the particulate guanylyl cyclase receptors, of which there are two identified: NPR-A and NPR-B. In fishes, these have been sequenced and characterized in eels, medaka, and dogfish shark (NPR-B only). The euryhaline rainbow trout provides an opportunity to further pursue examination of the system in teleosts. In this study, partial rainbow trout NPR-A-like and NPR-B-like mRNA sequences were identified via PCR and cloning. The sequence information was used in real-time PCR to examine mRNA expression in a variety of tissues of freshwater rainbow trout and rainbow trout acclimated to 35 parts per thousand seawater for a period of 10 days. In the excretory kidney and posterior intestine, real-time PCR analysis showed greater expression of NPR-B in freshwater fish than in those adapted to seawater; otherwise, there was no difference in the expression of the individual receptors in fresh water or seawater. In general, the expression of the NPR-A and NPR-B type receptors was quite low. These findings indicate that NPR-A and NPR-B mRNA expression is minimally altered under the experimental regime used in this study.  相似文献   

14.
In order to obtain more information about the physiological role(s) of flavin-containing monooxygenases (FMOs) in euryhaline teleost fishes, two experimental series were performed using adult and juvenile rainbow trout (Oncorhynchus mykiss). Cannulated adult trout were exposed to freshwater or 21% seawater for 48 h, whereas juvenile trout were acclimated to one of four different salinities: freshwater, 7%, 14%, or 21% during a 2-week period. FMO expression and activity were determined in red blood cells (RBC), liver, gill, kidney, gut, heart and brain. Furthermore, the content of trimethylamine oxide (TMAO; an FMO metabolite and an osmolyte) as well as urea were determined in various tissues. FMO expression and activity increased significantly and in a salinity dependent manner in osmoregulatory organs (gills, kidney and gut) in both juveniles and adult trout and, furthermore, in RBC in adults. No significant changes were observed in liver or heart. Urea content increased significantly and in a salinity dependent manner in all tissues, whereas TMAO was accumulated primarily in muscle tissue. Salinity dependent adjustment of FMO expression and activity primarily in osmoregulatory organs as well as regulation of TMAO content in muscle is consistent with previous studies showing an association of FMO with osmoregulation in euryhaline teleosts. However, the lack of a parallel increase of TMAO with urea in other tissues of fish at high salinity indicates other mechanisms of protection from intracellular urea may exist in non-muscular tissues.  相似文献   

15.
Teleosts, the bony fishes, inhabit both freshwater and seawaterenvironments. Some euryhaline fish, such as Fundulus heteroclitus,alternate between the two milieux several times daily. Regardlessof adaptation, the gills of these animals possess a highly specializedcell type called the chloride cell. This cell contains numerousmitochondria and exhibits a greatly amplified basolateral cellsurface richly endowed with Na,K-ATPase. Recent studies on isolatedopercular epithelia containing chloride cells have demonstratedactive chloride secretion and passive transepithelial sodiummovements, and have established the chloride secretory roleof this cell type in seawater-adapted teleosts. Current modelssuggest that chloride transport occurs via a transcellular route.Seawater chloride cells exist in multicellular units and sharesimple, shallow tight junctions which are thought to be theroute for passive sodium movement. Freshwater chloride cells,whose function remains to be elucidated, are generally describedas existing in a unicellular configuration. However, recentobservations in Fundulus heteroclitus adapted to salinitiesas low as 1% sea water reveal that chloride cells persist inmulticellular complexes with apical crypts. Strikingly, tightjunctions between chloride cells in this freshwater environmentare deep  相似文献   

16.
The ultrastructure of the gill primary lamellae of juvenile Atlantic salmon was examined during the parr-smolt transformation and for 42 days after smolts were exposed to sea water. Scanning electron microscopy indicated that primary lamellae were characterized by rough convoluted surfaces that became rougher throughout the experimental period and that crypts did begin to form in freshwater fish. Crypt formation increased in sea water.
Transmission electron microscopy indicated that parr preadapt for life in sea water in part by changes in chloride cells. Chloride cells show an elaboration of rough endoplasmic reticulum in fresh water and a decline of rough endoplasmic reticulum after 42 days of sea water exposure. The tubular membrane system becomes well developed in fresh water, and apical vesicles become abundant only after seawater exposure. Mitochondria are both spherical and elongate through the period and contain well developed cristae. No evidence of mitochondrial rupture was observed. The junctions between chloride cells and adjacent cells were characterized in fresh water by long tight junctions with desmosomes. This type of junction continued in sea water and was the norm between chloride cells and accessory cells after 42 days of seawater exposure. While leaky junctions appeared to be forming, no evidence was found of membrane interdigitation between accessory cells and chloride cells after 42 days of seawater exposure. It also appeared that seawater exposure influenced the number of chloride cells exposed to the external milieu.
Pavement cells showed an elaboration in fresh water of free ribosomes and rough endoplasmic reticulum and these elements became less prominent after seawater exposure.  相似文献   

17.
Summary Daily intramuscular injection of cortisol (4 mg kg–1 body weight) in rainbow trout,Salmo gairdneri, for 10 days caused significant increases in the number and individual apical surface area of gill chloride cells per mm2 of filament epithelium. Concomitantly, whole body influxes of sodium (Na+) and chloride (Cl) increased. Acute (3 h) intra-arterial infusion of cortisol did not affect whole body Na+ or Cl influx. A significant correlation was observed between both Na+ and Cl influxes and the fractional apical surface area of filament chloride cells in control, sham (saline-injected) and experimental (cortisol-injected) fish. The chloride cells displayed similar ultrastructural modifications in trout undergoing cortisol treatment as in trout transferred to ion-deficient water. These findings suggest the existence of structure/function relationships in which branchial chloride cell morphology is an important determinant of Na+ and Cl transport capacity. We conclude that chronic cortisol treatment enhances whole body Na+ and Cl influxes by promoting proliferation of branchial chloride cells. The results of correlation analysis indicate that the chloride cell is an important site of NaCl uptake in freshwater rainbow trout.  相似文献   

18.
The gills of both seawater and freshwater adapted eels have an ATPase activity which is stimulated by anions in the presence of Mg2+. Plasma membranes were distinguished from mitochondrial membranes with specific enzyme markers, the membrane fractions separated on a discontinuous sucrose gradient, and the ATPase activity of the plasma membranes studied. Activation by the anions of Cl- or HCO3- followed Michaelis-Menten kinetics and was competitively inhibited by SCN-. The Cl- and HCO3- activation characteristics were determined: no differences between the plasma membrane ATPase activities of freshwater and seawater-adapted fishes were observed. Maximal activity measurements after solubilization of the enzymes by Triton X 100 confirmed these findings. The function of a membrane anion-dependent ATPase in the brachial epithelium of euryhaline fish is discussed.  相似文献   

19.
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.  相似文献   

20.
Comparative studies were performed on the antioxidant enzyme activities and thiobarbituric acid reactive substance (TBARS) concentration in liver and red cells of two groups of rainbow trout (Oncorhynchus mykiss). The fish of the first group were cultured in freshwater and the others were adapted to sea-water by by being transferred from freshwater at 5-6 months of age. Catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were significantly higher in hepatic and extrahepatic tissues in both of the fish groups. Superoxide dismutase (SOD) activities were found lower in the seawater-adapted trout than in the freshwater-cultured trout. In both tissues, TBARS were found significantly higher in the seawater-adapted trout than in the freshwater trout. It was also observed that the red cells of the seawater-adapted trout were much more resistant to oxidative stress than the red cells of the freshwater-cultured trout. The results implicate that antioxidant capacities in the seawater-adapted trout and freshwater trout may be related to physical and chemical characteristics of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号