首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rabbit 113Cd7-metallothionein-2a (MT) contains two metal-thiolate clusters of three (cluster B) and four (cluster A) metal ions. The 113Cd-n.m.r. spectrum of 113Cd6-MT, isolated from 113Cd7-MT upon treatment with EDTA, is similar to that of 113Cd7-MT, but the cluster B resonances are lower in intensity, suggesting its co-operative metal depletion. (Zn1,113Cd6)-MT, formed upon addition of the Zn(II) ions to 113Cd6-MT, shows 113Cd-n.m.r. features characteristic of cluster B populations containing both Cd(II) and Zn(II) ions. The overall intensity gain of the mixed cluster B resonances per Cd as to those in 113Cd6- and 113Cd7-MT suggests a stabilization effect of the bound Zn(II) ions upon the previously established intramolecular 113Cd exchange within this cluster.  相似文献   

2.
Metal selectivity of metal-thiolate clusters in rabbit liver metallothionein (MT) 2 has been studied by examining the metal distribution of two similarly sized divalent metal ions, cobalt and zinc, which have different thiolate affinity. The forms of mixed-metal cluster species in (Co/Zn)7-MT generated with different ratios of both metal ions offered to the metal-free protein were investigated using EPR, ultraviolet/visible absorption and MCD spectroscopy. The results demonstrated that the distribution of these metals between the two metal-thiolate clusters is not random. Thus, the EPR absorption intensities of the bound Co(II) ions in the Zn-cluster matrix increased linearly up to a ratio of Co(II)/Zn(II) equivalents of 3:4, with the final EPR intensity of three non-interacting Co(II)-binding sites. This EPR behaviour is consistent with a binding scheme in which one Co(II) ion occupies a metal-binding site within the three-metal cluster and the remaining two Co(II) ions occupy two distinctly separate sites in the four-metal cluster. With four or more Co(II) ions in the cluster matrix, magnetic coupling between adjacent, sulphur-bridged Co(II) ions was observed. In previous studies on mixed-metal clusters in MT formed with Co(II)/Cd(II), Zn(II)/Cd(II) and Cd(II)/Fe(II), changes in the respective cluster volumes were shown to be a significant factor dictating the widely differing metal distributions in these systems. Based on the results of the current study, it is suggested that both the sizes of the two metal ions and their relative affinities towards the cysteine-thiolate ligands are important in the formation of mixed-metal clusters in MT.  相似文献   

3.
Rabbit liver Zn metallothionein-(MT) will bind cadmium readily between -26 degrees C and 70 degrees C. The binding reaction was monitored by recording the circular dichroism and magnetic circular dichroism spectra, in the region of the RS(-)----Cd2+ charge transfer transition at 250 nm, at intervals as aliquots of cadmium were added. For all temperatures, these data can be analyzed in terms of a distributed mechanism for cadmium binding when Zn-MT is used, and a domain-specific mechanism when apo-MT is used. The CD spectrum measured at -26 degrees C for Cd,Zn-MT, which was made by adding excess cadmium directly to Zn7-MT at -26 degrees C, is not the same as the CD spectrum of Cd-MT prepared at room temperature from the same Zn7-MT. Measurements of the stoichiometry of the cadmium and zinc bound to MT in the presence of excess cadmium at different temperatures indicates that below 5 degrees C at least one zinc atom remains bound to the protein. The mixed metal metallothionein, Cd/Zn-MT, that always forms below 5 degrees C, is characterized by a single maximum near 250 nm in the CD spectrum, rather than the derivative-shaped CD envelope that is diagnostic of the (Cd4-S11)alpha cluster, which indicates that the zinc occupies a site in the alpha domain. Rearrangement of the bound metals to the domain-specific distribution takes place if Cd,Zn-MT, prepared at subzero temperatures, is warmed above 30 degrees C.  相似文献   

4.
W R Bernhard  M Vasák  J H K?gi 《Biochemistry》1986,25(8):1975-1980
Mammalian metallothioneins (MT) contain 20 Cys in a total of 61 amino acid residues and bind 7 Cd and/or Zn ions. The metal is localized in two clusters made up of three and four metal-thiolate complexes in the NH2- and COOH-terminal half of the chain, respectively [Otvos, J.D., & Armitage, I. M. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7094-7098]. The formation of these oligonuclear complexes designated as Cd4 and Cd3 clusters has now been monitored in MT reconstituted with varying amounts of Cd by using differential chemical modification of Cys with [14C]iodoacetamide. At ratios below 2-3 mol of Cd/mol of MT bound, no differential protection of Cys by the metal, and hence no preferred binding, is detectable. At Cd-to-protein ratios between 3 and 5 mol of Cd/mol of MT, the modification profiles reveal preferred and cooperative binding in the COOH-terminal half of the chain, indicating formation of the Cd4 cluster. At still higher ratios, formation of the Cd3 cluster is initiated in the NH2-terminal section of the polypeptide chain. Comparison of the differential modification data of Cd6-MT and Cd7-MT suggests that the last Cd to be bound is coordinated to Cys ligands located mainly between positions 20 and 30 of the sequence. The extent of labeling of the different Cys in Cd7-MT indicates that the ligands of the Cd3 cluster are 3 times as accessible to iodoacetamide than those of the Cd4 cluster, suggesting a greater thermodynamic or kinetic stability of the latter.  相似文献   

5.
The metalloprotein metallothionein (MT) is remarkable in its metal binding properties: for the mammalian protein, well-characterized species exist for metal to sulfur ratios of M7S20, M12S20, and M18S20, where M = Cd(II), Zn(II), Hg(II), Ag(I), Au(I), and Cu(I). Optical spectra in general, and circular dichroism (CD) and luminescence spectra in particular, provide rich detail of a complicated metal binding chemistry when metals are added directly to the metal-free or zinc-containing protein. CD spectral data unambiguously identify key metal to protein stoichiometric ratios that result in well-defined structures. Electrospray ionization-mass spectrometry data are reported for reactions in which Hg(II) binds to apo-MT 2A as previously described from CD data. Emission spectra in the 450-750 nm region have been reported for metallothioneins containing Ag(I), Au(I), and Cu(I). The luminescence of Cu-MT can also be detected directly from mammalian and yeast cells. We report both steady-state and new dynamic data for titrations of Zn-MT with Cu(I). Analysis of kinetic data for the addition of the first two Cu(I) atoms to Zn-MT indicates a first-order mechanism over a concentration range of 5-50 microM. Three-dimensional modeling was carried out using the results of the CD and EXAFS studies, model calculations for Zn7-MT, Hg7-MT, and Cu12-MT are described.  相似文献   

6.
The formation of two metal-thiolate clusters in rabbit liver metallothionein 2 (MT) has been examined by 113Cd NMR spectroscopy at pH 7.2 and 8.6. The chemical shifts of the 113Cd resonances developing in the course of apoMT titration with 113Cd(II) ions have been compared with those of fully metal occupied 113Cd7-MT. At pH 7.2 and at low metal occupancy (less than 4), a cooperative formation of the four-metal cluster (cluster A) occurs. Further addition of 113Cd(II) ions generates all the resonances of the three-metal cluster (cluster B) in succession, suggesting cooperative metal binding to this cluster also. In contrast, similar studies at pH 8.6, at low metal occupancy (less than 4), reveal a broad NMR signal centered at 688 ppm. This observation indicates that an entirely different protein structure exists. When exactly 4 equiv of 113Cd(II) are bound to apoMT, the 113Cd NMR spectrum changes to the characteristic spectrum of cluster A. Further addition of 113Cd(II) ions again leads to the cooperative formation of cluster B. These results stress the determining role of the cluster A domain on the overall protein fold. The observed pH dependence of the cluster formation in MT can be rationalized by the different degree of deprotonation of the cysteine residues (pKa approximately 8.9), i.e., by the difference in the Gibbs free energy required to bind Cd(II) ions to the thiolate ligands at both pH values.  相似文献   

7.
The cadmium-binding properties of rabbit liver Zn7-metallothionein (MT) 2 and apo-MT, rat liver apo-alpha MT and Zn4-alpha MT, and calf liver apo-beta MT, have been studied using circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies. Both sets of spectra recorded during the titration of Zn7-MT 2 with Cd2+ exhibit a complicated pattern that is quite unexpected. Such behavior is not found at all in sets of spectra recorded during titrations of the apo-species (apo-MT, apo-alpha MT, and apo-beta MT), and is observed to a much lesser extent in the titration of Zn-alpha MT. Comparison between the band centers of the Cd-alpha MT and Cd-beta MT indicates that the CD spectrum of Cd7-MT is dominated by intensity from transitions that originate on Cd-S chromophores in the alpha domain, with little direct contribution from the beta domain. Analysis of the spectra recorded during titrations of Zn7-MT 2 with Cd2+ suggests: (i) that Cd2+ replaces Zn2+ in Zn7-MT isomorphously; (ii) that cadmium binds in a nonspecific, "distributed" manner across both domains; (iii) that cluster formation in the alpha domain only occurs after 4 mol eq of cadmium have been added and is indicated by the presence of a cluster-sensitive, CD spectral feature; (iv) that the characteristic derivative CD spectrum of native Cd4,Zn3-MT is only obtained from "synthetic" Cd4,Zn3-MT following a treatment cycle that allows the redistribution of cadmium into the alpha domain; warming the synthetic "native," Cd4,Zn3-MT, to 65 degrees C results in cadmium being preferentially bound in the alpha domain; and (v) Zn7-MT will bind Cd2+ quite normally at up to 65 degrees C but with greater specificity for the alpha domain compared with titrations carried out at 25 degrees C. These results suggest that the initial presence of zinc in both domains is an important factor in the lack of any domain specificity during cadmium binding to Zn-MT which contrasts the domain specific manner observed for cadmium binding to apo-MT.  相似文献   

8.
In mammalian metallothioneins the metals are organized in two adamantane-type clusters with three and four metal ions which are tetrahedrally coordinated by thiolate ligands. The metal selectivity of the metal-thiolate clusters in rabbit liver metallothionein has been studied by offering two ions, i.e. Co(II)/Cd(II), Zn(II)/Cd(II) or Co(II)/Zn(II), to the metal-free protein. The heterogeneous metal complexes thus formed were characterized by electronic absorption, magnetic circular dichroism. 113Cd-NMR and EPR spectroscopy. In the case of Co/Cd-metallothionein, homometallic cluster occupation occurs, with the Cd(II) ions bound exclusively to the four-metal cluster. In contrast, heterometallic clusters were formed for both Zn/Cd- and Co/Zn-metallothionein. Based on evidence from corresponding inorganic structures of adamantane metal-thiolate cages, it is suggested that the major factor governing the cluster type is the protein structure perturbation due to the cluster volume variations. Thus, while metal thiolate affinities are important in the folding process, size-match selectivity is the dominant factor in the metal-loaded protein.  相似文献   

9.
Order of metal binding in metallothionein   总被引:5,自引:0,他引:5  
Purified isoforms of rat liver apometallothionein were reconstituted in vitro with Cd and Zn ions to study the order of binding of the 7 metal sites in the two separate metal clusters, one containing four metal ions (cluster A) and the other containing three (cluster B). Reconstitution with 7 Cd ions resulted in a metalloprotein similar to induced Cd,Zn-metallothionein by the criteria of electrophoretic mobility, insensitivity to proteolysis by subtilisin, and the pH-dependent release of Cd. Proteolytic digestion of metallothionein reconstituted with suboptimal quantities of Cd followed by separation of Cd-containing polypeptide fragments by electrophoresis and chromatography revealed metal ion binding initially occurs in the 4-metal center, cluster A. Upon saturation of the 4 sites in cluster A, binding occurs in the 3-metal center, cluster B. Samples reconstituted with 1 to 4 Cd ions per protein molecule, followed by digestion with subtilisin, yielded increasing amounts of a proteolytically stable polypeptide fragment identical with the alpha fragment domain that is known to encompass the 4-metal center. Samples renatured with 5 to 7 Cd ions per metallothionein molecule showed decreasing quantities of alpha fragment and increasing amounts of native-like metallothionein. Similar results were obtained in reconstitution studies with Zn ions. Samples reconstituted with 7 Cd eq followed by incubation with EDTA revealed that cluster B Cd ions were removed initially. The binding process in each domain is cooperative. Reconstitution of apometallothionein with 2 Cd ions followed by proteolysis yields a 50% recovery of saturated Cd4 alpha cluster. Likewise, when Cd5-renatured metallothionein was digested with subtilisin, 30% of the molecules were identified as Cd7 metallothionein with the remainder as Cd4 alpha fragment.  相似文献   

10.
Metal ion binding to the sulfhydryl groups of apometallothionein (apo-MT) causes both the formation of native metal-thiolate clusters and the folding of the polypeptide chain of each domain. Cd2+ and Zn2+ react with apo-MT to form metal-thiolate bonds in reactions that are complete within milliseconds and which are pH-dependent. Dual mixing experiments were conducted that involve the initial reaction of metal ion and apo-MT followed by mixing with 5,5'-N-dithio-bis(2-nitrobenzoate) or EDTA after 26 ms. They showed that structures had formed within the brief reaction period which were resistant to rapid reaction with reagents that interact with sulfhydryl groups or metal ions, respectively. It was concluded that native metallothionein domains had been constituted within this brief period. Apo-MT was also titrated with Co2+ to yield Co(n)-MT (n=1-7). Initially, Co2+ bound to independent, tetrahedral thiolate sites. Spectrophotometric analysis of the titration suggested that the independent Co(II) sites began to coalesce into clusters at n=4 (pH 7.2) or n=5 (pH 8.4). Back titration of free sulfhydryl groups (S) in Co(n)-MT (n=1-7) with iodoacetamide at pH 7.2 confirmed that clustering began at n=4. Upon conversion of these alkylated structures to the corresponding 113Cd2+ species 113Cd NMR spectroscopy established that the location of Co(II) in Co(n)-MT (n=1-3) was non-specific and that at n=4, the only observable structure was Co(II)4S11. The results suggest possible kinetic pathways of folding that are conceptually similar to those hypothesized for other small proteins.  相似文献   

11.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

12.
Metallothioneins constitute a class of ubiquitously occurring low molecular mass proteins (6–7 kDa) possessing two cysteine thiolate-based metal clusters usually formed by the preferential binding of d10 metal ions such as Zn II and Cd II. The three-dimensional solution structure of mammalian proteins has been determined by two-dimensional NMR spectroscopy of 113Cd7-metallothionein. The structure shows two protein domains encompassing the M3(CysS)9- and M4(CysS)11-cluster with each metal ion being tetrahedrally coordinated by thiolate ligands. The application of 113Cd NMR proved to be indispensable in the structural studies of metallothioneins. Thus, both homonuclear 113Cd decoupling studies and 113Cd-113Cd COSY of 113Cd7-metallothionein established the existence of two metal-thiolate clusters in this protein. The identification of sequence specific cysteine-cadmium coordinative bonds came from heteronuclear 113Cd-1H COSY experiments. Independently, the 113Cd NMR characterization of the intermediate metal-protein complexes, leading to the cluster structure in 113Cd7- metallothionein, revealed a stepwise cluster formation process with the Cd4(CysS)11-cluster being formed first. The recent demonstration of a Karplus-like dependence between the heteronuclear 3J(113 Cd,1 H) coupling constants for the cysteine C protons and the H-C: -S -Cd dihedral angles should allow to derive the geometry of the Cd-(S-Cys) centers in various metallothioneins and related metalloproteins. A possible application of 113Cd NMR to the study of metallothioneins in the environment is discussed.  相似文献   

13.
The binding of diamagnetic Cd(II) and paramagnetic Co(II) ions to the metal-free form of crab, Cancer pagurus, metallothionein (MT) was studied by various spectroscopic techniques. Both reconstituted and native Cd(II)-MT containing 6 mol Cd(II)/mol protein display electronic absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra which were indistinguishable. The stoichiometric replacement of Cd(II) ions in native Cd(II)6-MT by paramagnetic Co(II) ions enabled the geometry of the metal-binding sites to be probed. The electronic absorption and MCD spectra of Co(II)6-MT revealed features characteristic of distorted tetrahedral tetrathiolate Co(II) coordination for all six metal-binding sites. The stepwise incorporation of Cd(II) and Co(II) ions into this protein was monitored by electronic absorption and CD, and by electronic absorption and EPR spectroscopy, respectively. The results indicate that the metal-thiolate cluster structure is generated when more than four metal ions are bound. Below this titration point separate tetrahedral tetrathiolate complexes exist. This suggests that the cluster formation occurs in a two-step process. Furthermore, the spectroscopic features in both Cd(II)- and Co(II)-metal derivatives above the full metal occupancy of six suggest the existence of one additional metal-binding site. The subsequent loss of one Cd(II) ion from crab Cancer Cd(II)7-MT in the gel filtration studies demonstrate the low metal-binding affinity of the latter site. While the spectroscopic properties indicate an exclusively tetrahedral type of metal-thiolate sulfur coordination for the binding of the first six metal ions, they suggest that the seventh metal ion is coordinated in a different fashion.  相似文献   

14.
J D Otvos  H R Engeseth  S Wehrli 《Biochemistry》1985,24(24):6735-6740
113Cd NMR analysis of rabbit liver metallothionein 2 reconstituted with 113Cd at all seven binding sites has previously indicated that the metals are arranged in two metal-thiolate clusters [Otvos, J.D., & Armitage, I.M. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7094-7098]. Spectra of the protein always contained more than seven resonances, however, suggesting the samples were in some way heterogeneous. Results of a recent study of 113Cd metallothionein reconstituted in a different manner but also giving spectra with more than seven resonances have been interpreted as arguing against the two-cluster model of metal binding and in favor of a model in which structural flexibility of the protein allows many configurational substates of the cluster(s) to coexist [Vasak, M., Hawkes, G.E., Nicholson, J.K., & Sadler, P.J. (1985) Biochemistry 24, 740-747]. Data are presented here that indicate that dimers and larger oligomers of metallothionein formed as byproducts of metal reconstitution are the likely source of at least some of the 113Cd resonances attributed by these workers to configurational substrates. Removal of the contaminating oligomers by gel filtration yields a verifiably homogeneous protein whose 113Cd spectrum consists of seven resonances of comparable intensity. Unambiguous confirmation of the existence and structures of the two previously proposed metal-thiolate clusters was obtained by two-dimensional chemical shift correlation spectroscopy and spectral simulation of the 113Cd-113Cd splitting patterns of the individual resonances.  相似文献   

15.
Absorption, circular dichroism (CD), magnetic circular dichroism (MCD) and emission spectra of rat liver and rat kidney cadmium-, zinc- and copper-containing metallothioneins (MT) are reported. The absorption, CD and MCD data of native rat kidney Cd,Cu-MT protein closely resemble data recorded for the rat liver Cd,Zn-MT. This suggests that the major features in all three spectra of the native Cd,Cu-MT are dominated by cadmium-related bands. The CD spectrum of the Cd,Cu-MT recorded at pH 2.7 has the same band envelope that is observed for a Cd,Cu-MT formed in vitro by titration of Cd,Zn-MT with Cu(I), suggesting that the copper occupies the zinc sites in Cd,Cu-MT formed both in vivo and, at low molar ratios, in vitro. Remetallalion of the metallothionein from low pH in the presence of both copper and cadmium results in considerably less cadmium bound to the protein than was present in the native sample. It is suggested that this is due to the effect of the distribution of the copper amongst all available binding sites, thus inhibiting cluster formation by the cadmium. Emission spectra are reported for the first time for a cadmium- and copper-containing metallothionein. An emission band at 610 nm is shown to be a sensitive indicator of Cu(I) binding to metallothionein. Both the native Cd,Cu-MT and a Cd,Cu-MT formed in vitro exhibit an excitation spectrum with a band in the copper-thiolate charge-transfer region.  相似文献   

16.
Independence of the domains of metallothionein in metal binding   总被引:2,自引:0,他引:2  
Mammalian metallothionein is a low molecular weight protein with two metal-binding domains. To determine if metal binding in one domain affects binding in the other, we prepared peptides corresponding to the regions that enfold the two metal-thiolate clusters. Metal reconstitution studies of these peptides revealed stoichiometries of metal binding similar to those observed within the intact molecule. Thus, the alpha domain coordinates 4 Cd(II), 6 Cu(I), or 6 Ag(I) ions regardless of whether the domain is part of the total protein or is studied as a separate peptide. Likewise, the beta domain binds 3 Cd(II), 6 Cu(I), or 6 Ag(I) ions in both the intact protein and as a separate peptide. If cluster B in intact metallothionein is preformed with Cu(I) or Ag(I), cluster A saturates with either 4 mol eq of Cd(II) or 6 mol eq of Ag(I). Similarly, preformation of the A cluster with Cd(II) does not affect the binding of 6 Cu(I) ions in the B cluster. Therefore, the metal-dependent folding of the protein to create one cluster occurs independent of constraints or influences from the other domain. Formation of the protein with a tetrahedrally coordinated metal in one cluster and a trigonally coordinated metal in the other center is possible.  相似文献   

17.
Cooperative cluster formation in metallothionein   总被引:1,自引:0,他引:1  
An ion-exchange chromatography procedure was used to resolve apometallothionein from the metallo- form in a study of metal-thiolate cluster formation. Chromatography of metallothionein reconstituted with Cd(II), Zn(II), or Cu(I) at neutral pH on carboxymethyl-cellulose led to removal of apoprotein from a solution without effect on recovery of the metalloprotein. Analysis of the effluent revealed apparent cooperative binding of these metal ions to the protein. Addition of 1-4 mol eq Cd(II) ions led to the recovery of metallothionein with around 4 mol eq Cd bound. The yield of this form increased with increasing starting metal ion equivalency. These results were obtained with two different ion-exchange resins. The cooperativity of binding was not total, but was initially confined to the carboxyl-terminal alpha domain. The results of metal and protein yields are inconsistent with random, noninteractive binding. Similar data were obtained with Zn(II) and Cu(I) ions although Cu(I) exhibited initial cooperative binding within the amino-terminal beta domain with over 5 mol eq Cu(I) bound.  相似文献   

18.
The metalated forms of metallothionein are well studied (particularly Zn-MT, Cu-MT and Cd-MT), but almost nothing is known about the chemical and structural properties of apometallothioneins despite their importance in initial metalation and subsequent demetalation. Electrospray ionization mass spectrometry was used to provide a detailed view of the structural properties of the metal-free protein. Mass spectra of Zn(7)-MT and apo-MT at pH 7 exhibit the same charge state distribution, indicating that apo-MT is tightly folded like the metallated protein, whereas apo-MT at pH 3 exhibits a charge state spectrum associated with unfolding or denaturation. Benzoquinone was used to modify the cysteines in the β-MT (9Bq), and α-MT (11Bq) fragments, and the full βα-MT (20Bq) protein. ESI-MS showed that the overall volume and, therefore, the extent of folding for the modified proteins is similar to that of Zn-MT. Molecular modeling using MM3-MD methods provided the volume of each modified protein. The volumes of the partially modified proteins follow the same trend as the charge states, showing that ESI-MS is an excellent method with which to follow small changes in protein folding as a function of applied chemical stress. The data suggest that the structure of apo-βα-MT is more organized than previously considered.  相似文献   

19.
The plant metallothionein 2 from Cicer arietinum (chickpea; cicMT2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by a linker region 41 amino acids in length. This metallothionein thus differs significantly from the well-studied vertebrate forms. A synthetic gene encoding cicMT2 was designed, cloned into a suitable vector, and the protein was over-expressed in Escherichia coli. For the first time, an in-depth spectroscopic characterization of cicMT2 in the presence of divalent metal ions is performed showing a binding capacity for five Zn(II), Cd(II), or Co(II) ions and the typical features of metal-thiolate clusters. Based on proteolytic digestion experiments, the cluster arrangement formed by the divalent metal ions and the cysteine thiolate groups connects the amino-terminal with the carboxy-terminal cysteine-rich region. The cluster formation process, put into effect with the addition of the fourth metal ion to the apo protein, was investigated using the characteristic shift of absorption bands observed in the UV/Vis spectra upon titration with Co(II). The pH-dependent Zn(II)- and Cd(II)-thiolate cluster stability is one of the highest observed for plant MTs so far, but lower than that usually found in vertebrate metallothioneins. The dependence of the pH stability on the ionic strength of the solution is more pronounced for the Cd(II)- than for the Zn(II)-form of the protein.  相似文献   

20.
The yield of the alpha-fragment of rabbit liver metallothionein 2 was used to test the domain-specificity and mobility of Cd2+ and Zn2+ when bound to metallothionein. Increasing molar ratios of Cd2+ were added to either Zn7-metallothionein or the metal-ion-free apo-metallothionein. The enzyme subtilisin was used to digest those parts of the peptide chain that were not bound to Cd2+. Analysis of the digestion products was carried out by separation by polyacrylamide-gel electrophoresis. The chelation agent EDTA was used as a competitive chelator. It was found that the presence of excess EDTA greatly enhances the formation of the Cd4-metallothionein alpha-fragment, and catalyses the complete digestion of all other the metal-ion-containing peptides, so that even Cd7-metallothionein, formed when 7 molar equivalents of Cd2+ are added to Zn7-metallothionein, is digested to the alpha-fragment. These results suggest that the Cd2+ bound in the beta-sites is very labile, much more labile than the kinetics of the off-reaction would suggest. The observation of significant amounts of alpha-fragment on the gels, even when the stoichiometry of the metal ions initially present in the protein should not have resulted in much concentration of Cd4-alpha-fragment clusters, indicates that as the digestion proceeds the metal ions move to sites that form complete clusters and therefore selectively protect that part of the peptide chain from digestion. We also find that rabbit Cd4-metallothionein 2 alpha-fragment stains near to the top of the gel, in complete contrast with the location of rat Cd4-metallothionein 2 alpha-fragment. This difference in the mobilities suggests that the alpha-fragment prepared from rabbit metallothionein 2 is much less negatively charged than the analogous protein fragment prepared from rat liver metallothionein 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号