首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Han BC  Koh SB  Lee EY  Seong YH 《Life sciences》2004,76(5):573-583
L-glutamate (glutamate) is an important neurotoxin as well as the major excitatory neurotransmitter. Extracellular glutamate levels are elevated following ischemia, hypoglycemia, and trauma. One consequence of elevated glutamate levels is cell swelling. Such swelling occurs primarily in astroglial cells. We characterized the regional difference in glutamate-induced swelling response of cultured astrocytes from rat cerebral cortex, hippocampus and cerebellum. Glutamate produced dose-dependent astrocytic swelling in both cerebral cortex and hippocampus, showing a maximal effect in 0.5 mM concentration, as measured by 3-O-methyl-D-[1-3H]glucose uptake. However, in cerebellum, glutamate did not produce astrocytic swelling. It has been suggested that Na+ -dependent glutamate uptake is a possible mechanism of glutamate-induced swelling. The Vmax for glutamate uptake into cerebellum astrocytes was significantly lower (6.7 nmol/mg protein/min) than those for cerebral cortex and hippocampus astrocytes (13.0 and 12.0 nmol/mg protein/min, respectively). In three regions, more than 90% of the cultured cells showed glial fibrillary acidic protein (GFAP) immunoreactivity. Immunoreactivity of GLT, one of the markers of glutamate transporters, which is expressed at low levels in cultured astrocytes, did not show any differences in three regions. However, immunoreactivities of GLAST, the other astroglial glutamate transporter, and aquaporin4 (APQ4), a water transporter, were significantly higher in cerebral cortex and hippocampus than in cerebellum. These results may explain the regional difference of glutamate-induced astrocytic swelling.  相似文献   

2.
3.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

4.
Abstract: Excess activation of NMDA receptors is felt to participate in secondary neuronal damage after traumatic brain injury (TBI). Increased extracellular glutamate is active in this process and may result from either increased release or decreased reuptake. The two high-affinity sodium-dependent glial transporters [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)] mediate the bulk of glutamate transport. We studied the protein levels of GLT-1 and GLAST in the brains of rats after controlled cortical impact-induced TBI. With use of subtype-specific antibodies, GLT-1 and GLAST proteins were quantitated by immunoblotting in the ipsilateral and contralateral cortex at 2, 6, 24, 72, and 168 h after the injury. Sham-operated rats served as control. TBI resulted in a significant decrease in GLT-1 (by 20–45%; p < 0.05) and GLAST (by 30–50%; p < 0.05) protein levels between 6 and 72 h after the injury. d -[3H]Aspartate binding also decreased significantly (by 30–50%; p < 0.05) between 6 and 72 h after the injury. Decreased glial glutamate transporter function may contribute to the increased extracellular glutamate that may mediate the excitotoxic neuronal damage after TBI. This is a first report showing altered levels of glutamate transporter proteins after TBI.  相似文献   

5.
The Na+-dependent, "high-affinity" transport of L-glutamate (GluT) in brain tissue has become a significant focus of interest, particularly since it has been revealed that abnormalities of GluT may be associated with serious neurological disorders. Using quantitative autoradiography on 3H-sensitive films, we have studied, in thaw-mounted sections of rat brain, the distribution and pharmacology of radioligand binding to sites with characteristics of the substrate-recognition/binding locus on GluT. The technique makes it possible to determine not only the intensity of binding in brain regions but, with a high level of precision, pharmacological constants such as IC50 or nH. [3H]L-aspartate and [3H]D-aspartate are two classical radioligands used in studies of GluT. We have determined IC50 values for the inhibition of [3H]L- and [3H]D-aspartate binding by their non-radioactive counterparts in the cerebral neocortex. hippocampus, striatum, septal nuclei and the cerebellar cortex. The two radioligands did not appreciably differ from each other in their interactions with the binding sites in the forebrain, consistent with all Na+-dependent GluT binding sites in that region having no stereoselectivity for aspartate enantiomers. In the cerebellar cortex, however, the data indicated the presence of a GluT binding site that preferred L- over D-aspartate. These findings contrast with many previous observations and suggest that the pharmacological characteristics of the ligand binding sites on GluT in the mammalian cerebellar cortex may have to be re-assessed and/or a possibility of an existence of (a) hitherto unknown molecule(s) with properties of a glutamate transporter be considered.  相似文献   

6.
Anomalies in glutamate homeostasis may contribute to the pathological processes involved in Alzheimer’s disease (AD). Glutamate released from neurons or glial cells is normally rapidly cleared by glutamate transporters, most of which are expressed at the protein level by glial cells. However, in some patho-physiological situations, expression of glutamate transporters that are normally considered to be glial types, appears to be evoked in populations of distressed neurons. This study analysed the expression of exon-skipping forms of the three predominant excitatory amino acid (glutamate) transporters (EAATs1-3) in brains afflicted with AD. We demonstrate by immunocytochemistry in temporal cortex, the expression of these proteins particularly in limited subsets of neurons, some of which appeared to be dys-morphic. Whilst the neuronal expression of the “glial” glutamate transporters EAAT1 and EAAT2 is frequently considered to represent the abnormal and ectopic expression of such transporters, we suggest this may be a misinterpretation, since neurons such as cortical pyramidal cells normally express abundant mRNA for these EAATs (but little if any EAAT protein expression). We hypothesize instead that distressed neurons in the AD brain can turn on the translation of pre-existent mRNA pools, or suppress the degradation of alternately spliced glutamate transporter protein, leading to the “unmasking” of, rather than evoked expression of “glial” glutamate transporters in stressed neurons. Special issue article in honor of Dr. Graham Johnston.  相似文献   

7.

Background  

Astrocytomas are cancers of the brain in which high levels of extracellular glutamate plays a critical role in tumor growth and resistance to conventional treatments. This is due for part to a decrease in the activity of the glutamate transporters, i.e. the Excitatory Amino Acid Transporters or EAATs, in relation to their nuclear mislocalization in astrocytoma cells. Although non-astrocytoma cancers express EAATs, the localization of EAATs and the handling of L-glutamate in that case have not been investigated.  相似文献   

8.
Abstract: The glutamate transporters in the plasma membranes of neural cells secure termination of the glutamatergic synaptic transmission and keep the glutamate levels below toxic concentrations. Astrocytes express two types of glutamate transporters, GLAST (EAAT1) and GLT1 (EAAT2). GLT1 predominates quantitatively and is responsible for most of the glutamate uptake activity in the juvenile and adult brain. However, GLT1 is severely down-regulated in amyotrophic lateral sclerosis, a progressive neurodegenerative disease. Furthermore, selective loss of this transporter occurs in cultured astroglia. Expression of GLAST, but not of GLT1, seems to be regulated via the glutamate receptor signalling. The present study was undertaken to examine whether neuronal factors, other than glutamate, influence the expression of astroglial glutamate transporters. The expression of GLT1 and GLAST was examined in primary cultures of cerebellar granule neurons, cortical neurons, and astrocytes under different experimental conditions, including those that mimic neuron-astrocyte interactions. Pure astroglial cultures expressed only GLAST, whereas astrocytes grown in the presence of neurons expressed both GLAST (at increased levels) and GLT1. The induction of GLT1 protein and its mRNA was reproduced in pure cortical astroglial cultures supplemented with conditioned media from cortical neuronal cultures or from mixed neuron-glia cultures. This treatment did not change the levels of GLAST. These results suggest that soluble neuronal factors differentially regulate the expression of GLT1 and GLAST in cultured astroglia. Further elucidation of the molecular nature of the secreted neuronal factors and corresponding signalling pathways regulating the expression of the astroglial glutamate transporters in vitro may reveal mechanisms important for the understanding and treatment of neurological diseases.  相似文献   

9.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

10.
Excess extracellular glutamate, the main excitatory neurotransmitter, may result in excitotoxicity and neural injury. The present study was designed to study the effect of hydrogen sulfide (H(2)S), a novel neuromodulator, on hydrogen peroxide (H(2)O(2)) -induced glutamate uptake impairment and cellular injuries in primary cultured rat cortical astrocytes. We found that NaHS (an H(2)S donor, 0.1-1000 microM) reversed H(2)O(2)-induced cellular injury in a concentration-dependent manner. This effect was attenuated by L-trans-pyrrolidine-2,4-dicarboxylic (PDC), a specific glutamate uptake inhibitor. Moreover, NaHS significantly increased [(3)H]glutamate transport in astrocytes treated with H(2)O(2), suggesting that H(2)S may protect astrocytes via enhancing glutamate uptake function. NaHS also reversed H(2)O(2)-impaired glutathione (GSH) production. Blockade of glutamate uptake with PDC attenuated this effect, indicating that the effect of H(2)S on GSH production is secondary to the stimulation of glutamate uptake. In addition, it was also found that H(2)S may promote glutamate uptake activity via decreasing ROS generation, enhancing ATP production and suppressing ERK1/2 activation. In conclusion, our findings provide direct evidence that H(2)S has potential therapeutic value for oxidative stress-induced brain damage via a mechanism involving enhancing glutamate uptake function.  相似文献   

11.
Traumatic brain injury causes development of posttraumatic epilepsy. Bleeding within neuropil is followed by hemolysis and deposition of hemoglobin in neocortex. Iron from hemoglobin and transferring is deposited in brains of patients with posttraumatic epilepsy. Iron compounds form reactive free radical oxidants. Microinjection of ferric ions into rodent brain results in chronic recurrent seizures and liberation of glutamate into the neuropil, as is observed in humans with epilepsy. Termination of synaptic effects of glutamate is by removal via transporter proteins. EAAC-1 is within neurons while GLT-1 and GLAST are confined to glia. Persistent down regulation of GLAST production is present in hippocampal regions in chronic seizure models. Down regulation of GLAST may be fundamental to a sequence of free radical reactions initiated by brain injury with hemorrhage. Administration of antioxidants to animals causes interruption of the sequence of brain injury responses induced by hemorrhage, suggesting that such a strategy needs to be evaluated in patients with traumatic brain injury. Special issue article in honor of Dr. Akitane Mori.  相似文献   

12.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   

13.
14.
During ischemia, the operation of astrocytic/neuronal glutamate transporters is reversed and glutamate and Na+ are co-transported to the extracellular space. This study aims to investigate whether this reversed operation of glutamate transporters has any functional meanings for astrocytes themselves. Oxygen/glucose deprivation (OGD) of neuron/astrocyte co-cultures resulted in the massive death of neurons, and the cell death was significantly reduced by treatment with either AP5 or DHK. In cultured astrocytes with little GLT-1 expression, OGD produced Na+ overload, resulting in the reversal of astrocytic Na+/Ca2+-exchanger (NCX). The reversed NCX then caused Ca2+ overload leading to the damage of astrocytes. In contrast, the OGD-induced Na+ overload and astrocytic damage were significantly attenuated in PACAP-treated astrocytes with increased GLT-1 expression, and the attenuation was antagonized by treatment with DHK. These results suggested that the OGD-induced reversal of GLT-1 contributed to the survival of astrocytes themselves by releasing Na+ with glutamate via reversed GLT-1.  相似文献   

15.
Astrocyte and Neuron Intone Through Glutamate   总被引:1,自引:0,他引:1  
Yang CZ  Zhao R  Dong Y  Chen XQ  Yu AC 《Neurochemical research》2008,33(12):2480-2486
The unexpected finding of astrocytes to release glutamate as gliotransmitter challenges the traditional concepts on astrocyte being “passive” in CNS communications. Glutamate is the major excitatory transmitter in transferring information between neurons, but is now also known to activate astrocyte through transporters and receptors. Together with the sensitive swelling response, astrocytes could respond directly to glutamate and neuronal activity. Other new functions of astrocytes include modulation of synaptic plasticity and cerebral blood flow (CBF). The classic glutamate deplenishment through glutamine synthesis and CO2 production does not account for the total glutamate internalized into astrocytes. This leads us to speculate there are many hidden functions of glutamate in neurons and astrocytes waiting to be discovered. In this review, we attempted to reexamine some of these new and older functions of glutamate and to reevaluate the roles of glutamate intoning these two cell types. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

16.
Reduction in or dysfunction of glutamate transporter 1 (GLT1) is linked to several neuronal disorders such as stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis. However, the detailed mechanism underlying GLT1 regulation has not been fully elucidated. In the present study, we first demonstrated the effects of mammalian target of rapamycin (mTOR) signaling on GLT1 regulation. We prepared astrocytes cultured in astrocyte-defined medium (ADM), which contains several growth factors including epidermal growth factor (EGF) and insulin. The levels of phosphorylated Akt (Ser473) and mTOR (Ser2448) increased, and GLT1 levels were increased in ADM-cultured astrocytes. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor or an Akt inhibitor suppressed the phosphorylation of Akt (Ser473) and mTOR (Ser2448) as well as decreased ADM-induced GLT1 upregulation. Treatment with the mTOR inhibitor rapamycin decreased GLT1 protein and mRNA levels. In contrast, rapamycin did not affect Akt (Ser473) phosphorylation. Our results suggest that mTOR is a downstream target of the PI3K/Akt pathway regulating GLT1 expression.  相似文献   

17.
Abstract: Phosphatidylinositol bisphosphate hydrolysis, leading to the production of myo -inositol trisphosphate and diacylglycerol, may play a significant role in the pathogenesis of hypoxic-ischemic brain injury. We used tritiated myo -inositol phosphate (3H-IP) accumulation as a means to quantitate phosphoinositide hydrolysis in prelabeled astroglial cultures subjected to combined glucose-oxygen deprivation. Astroglial cultures exposed to combined glucose-oxygen deprivation had significantly greater 3H-IP accumulation compared with cultures exposed to control conditions. To delineate the role of the metabotropic glutamate receptor in astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation, we studied the effects of two metabotropic glutamate receptor antagonists, 2-amino-3-phosphonopropionic acid and (+)-methyl-4-carboxyphenylglycine. 2-Amino-3-phosphonopropionic acid attenuated the accumulation of 3H-IP during combined glucose-oxygen deprivation but acted as an agonist under control conditions. (+)-Methyl-4-carboxyphenylglycine had no effect on 3H-IP accumulation during combined glucose-oxygen deprivation or under control conditions. These results suggest that activation of astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation may be mediated, at least in part, by the metabotropic glutamate receptor.  相似文献   

18.
目的:探讨谷氨酸及其转运体在高压氧(hyperbaric oxygen,HBO)致中枢神经系统氧中毒(central nervous system oxygen toxicity,CNS-OT)发生中的作用。方法:(1)大鼠侧脑室注射谷氨酸转运体(Glutamate Transporter-1,GLT-1)选择性激动剂Ceftriaxone后观察氧惊厥潜伏期。采用随机数字法将大鼠分为对照组和50μg、100μg以及200μg Ceftriaxone给药组。采用侧脑室注射方法分别给予生理盐水和不同剂量Ceftriaxone后,进行0.6 MPa HBO暴露,记录大鼠的惊厥潜伏期。(2)大鼠侧脑室注射GLT-1选择性抑制剂DHK后观察氧惊厥潜伏期。采用随机数字法将大鼠分为对照组和5μg、10μg以及20μg DHK给药组。采用脑室注射方法分别给予生理盐水和不同剂量DHK后,进行0.6 MPa HBO暴露,记录大鼠的惊厥潜伏期。结果:脑室注射100μg Ceftriaxone组(33分4.2秒4分12.4秒)和200μg Ceftriaxone组(47分4.2秒5分5.2秒)惊厥潜伏期显著延长,差异有统计学意义(P 0.05),并存在一定量效关系。脑室注射5μg DHK组(16分44.4秒±2分4.7秒)、10μg DHK组(12分51秒±1分23.3秒)和20μg DHK组(7分31.1秒±53秒)惊厥潜伏期显著缩短,差异有统计学意义(P 0.05),并存在一定量效关系。结论:中枢局部给予GLT-1激动剂可以有效延长CNS-OT的潜伏期;中枢局部给予GLT-1抑制剂可以有效缩短CNS-OT的潜伏期。  相似文献   

19.
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol present in grapes and red wine, which has antioxidant properties and a wide range of other biological effects. In this study, we investigated the effect of resveratrol, in a concentration range of 10–250 μM, on primary cortical astrocytes; evaluating cell morphology, parameters of glutamate metabolism such as glutamate uptake, glutamine synthetase activity and glutathione total content, and S100B secretion. Astrocyte cultures were prepared of cerebral cortex from neonate Wistar rats. Morphology was evaluated by phase-contrast microscopy and immunocytochemistry for glial fibrillary acidic protein (GFAP). Glutamate uptake was measured using l-[2,3-3H]glutamate. Glutamine synthetase and content of glutathione were measured by enzymatic colorimetric assays. S100B content was determined by ELISA. Typical polygonal morphology becomes stellated when astrocyte cultures were exposed to 250 μM resveratrol for 24 h. At concentration of 25 μM, resveratrol was able to increase glutamate uptake and glutathione content. Conversely, at 250 μM, resveratrol decreased glutamate uptake. Unexpectedly, resveratrol at this high concentration increased glutamine synthetase activity. Extracellular S100B increased from 50 μM upwards. Our findings reinforce the protective role of this compound in some brain disorders, particularly those involving glutamate toxicity. However, the underlying mechanisms of these changes are not clear at the moment and it is necessary caution with its administration because elevated levels of this compound could contribute to aggravate these conditions.  相似文献   

20.
Huntington’s disease (HD) is caused by a CAG repeat expansion in the HD gene, but how this mutation causes neuronal dysfunction and degeneration is unclear. Inhibition of glutamate uptake, which could cause excessive stimulation of glutamate receptors, has been found in animals carrying very long CAG repeats in the HD gene. In seven HD patients with moderate CAG expansions (40–52), repeat expansion and HD grade at autopsy were strongly correlated (r = 0.88, p = 0.0002). Uptake of [3H]glutamate was reduced by 43% in prefrontal cortex, but the level of synaptic (synaptophysin, AMPA receptors) and astrocytic markers (GFAP, glutamate transporter EAAT1) were unchanged. Glutamate uptake correlated inversely with CAG repeat expansion (r = −0.82, p = 0.015). The reducing agent dithiothreitol improved glutamate uptake in controls, but not in HD brains, suggesting irreversible oxidation of glutamate transporters in HD. We conclude that impairment of glutamate uptake may contribute to neuronal dysfunction and degeneration in HD. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号