首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma apolipoprotein E (apoE) is a ligand for the cellular uptake of cholesterol-rich plasma lipoproteins. ApoE also inhibits mitogen-stimulated lymphocyte proliferation and gonadotropin-stimulated ovarian theca/interstitial cell androgen production. To address the mechanism(s) by which apoE is active and to understand its interaction with the target cells, we prepared and examined the inhibitory activity of a series of apoE synthetic peptides. ApoE peptides representing amino acid residues 93-112, 141-155, 161-171, 172-182, and 174-193 were not active in either bioassay. However, specific inhibition of both lymphocyte proliferation and ovarian androgen production was observed with a self-conjugate of peptide-(141-155). Furthermore, a synthesized dimeric peptide representing two repeats of sequence-(141-155) (i.e. (141-155)-(141-155] was active as well. In both bioassays, the inhibition observed was not a result of direct cell killing. Furthermore, these apoE peptides exhibited activities with characteristics that were shared with those of native apoE. The results indicate that amino acid residues 141-155 of apoE are responsible for the biological activity of apoE. Furthermore, the results suggest that dimers or multimers of native apoE may be a biologically important species.  相似文献   

2.
This study showed that synthetic peptides containing either a single copy or tandem repeat of the receptor binding domain sequence of apolipoprotein (apo) E, or a peptide containing its C-terminal heparin binding domain, apoE-(211-243), were all effective inhibitors of platelet-derived growth factor (PDGF)-stimulated smooth muscle cell proliferation. In contrast, only the peptide containing a tandem repeating unit of the receptor binding domain sequence of apoE, apoE-(141-155)(2), was capable of inhibiting PDGF-directed smooth muscle cell migration. Peptide containing only a single unit of this sequence, apoE-(141-155), or the apoE-(211-243) peptide were ineffective in inhibiting PDGF-directed smooth muscle cell migration. Additional experiments showed that reductively methylated apoE, which is incapable of receptor binding yet retains its heparin binding capability, was equally effective as apoE in inhibiting PDGF-stimulated smooth muscle cell proliferation. However, reductively methylated apoE was unable to inhibit smooth muscle cell migration toward PDGF. Additionally, the receptor binding domain-specific apoE antibody 1D7 also mitigated the anti-migratory properties of apoE on smooth muscle cells. Finally, pretreatment of cells with heparinase failed to abolish apoE inhibition of smooth muscle cell migration. Taken together, these data documented that apoE inhibition of PDGF-stimulated smooth muscle cell proliferation is mediated by its binding to heparan sulfate proteoglycans, while its inhibition of cell migration is mediated through apoE binding to cell surface receptors.  相似文献   

3.
CKS-17, an immunosuppressive peptide homologous to certain retroviral transmembrane envelope protein, has been shown to inhibit lymphocyte proliferation in response to mitogens or alloantigens when covalently attached to bovine serum albumin (CKS-17-BSA). To define its site of action, we determined if CKS-17 conjugated to human serum albumin (CKS-17-HSA) could block the direct activation of lymphocytes by phorbol-12-myristate-13-acetate (PMA) or by a synthetic diacylglycerol, dioctanoylglycerol (DiC8). CKS-17-HSA inhibited lymphocyte proliferation in response to PMA and ionomycin in a dose-dependent manner with up to 88% inhibition occurring with 15 microM CKS-17-HSA. The conjugated peptide also inhibited the proliferation of lymphocytes in response to DiC8 and ionomycin by up to 57% at 15 microM CKS-17-HSA. Based on these findings we investigated the effect of CKS-17-HSA on the activity of protein kinase C (PKC), an enzyme directly activated by PMA and DiC8. PKC was isolated chromatographically from the cytosol of human neutrophils or the human lymphoblastoid cell line Jurkat. CKS-17-HSA caused a dose-dependent enzyme inhibition with a concentration giving half-maximal inhibition (IC50) of ca.3 microM and greater than 95% inhibition at 15 microM CKS-17-HSA. Inhibition of PKC by the conjugated peptide was not reversed by increasing concentrations of Ca2+, Mg2+, phosphatidylserine, diolein, or adenosine triphosphate (ATP), indicating that the conjugated peptide did not function as a chelator or competitive inhibitor. In contrast to its effects on PKC, CKS-17-HSA did not inhibit the activity of adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase (PK-A) nor the calcium and phospholipid-independent form of PKC (PK-M). Moreover the peptide inhibited in vivo PKC activity in cytosol of intact cells and in membrane of PMA-stimulated cells. These results suggest that the inhibition of lymphocyte proliferation by CKS-17-HSA may be due to the direct inactivation of PKC.  相似文献   

4.
Retroviral infection is associated with immunosuppression, which has been shown to be due, in part, to the action of the envelope protein p15E. We studied a synthetic peptide (CKS-17) homologous to a highly conserved domain of the retroviral envelope protein p15E, which, when conjugated to BSA (CKS-17-BSA), can inhibit IL-1- and phorbol ester-mediated responses in cultured murine thymoma cells, and Ca2(+)- and phosphatidylserine-dependent protein kinase C (PKC) activity of cell homogenates. We characterized the mechanism of inhibition of PKC by the peptide. Using PKC purified from rat brain we found that CKS-17-BSA inhibited PKC-catalyzed Ca2(+)- and phosphatidylserine-dependent histone phosphorylation with an estimated ID50 of 4 microM. CKS-17-BSA did not inhibit the catalytic subunit of cAMP-dependent protein kinase. CKS-17-BSA also inhibited the Ca2(+)- and PS-independent activity of a catalytic fragment of PKC that was generated by limited trypsin treatment. However, CKS-17-BSA did not act as a competitive inhibitor of PKC with respect to ATP or phosphoacceptor substrate, despite the similarity between the CKS-17 sequence and substrates and pseudosubstrates of PKC. We conclude that this peptide homologue of a retroviral envelope protein has a novel mechanism of inhibition of PKC.  相似文献   

5.
Human plasma apolipoprotein E (apoE) is a low density lipoprotein (LDL) receptor ligand. It targets cholesterol-rich lipoproteins to LDL receptors on both hepatic and peripheral cells. The region of apoE responsible for its binding to the LDL receptor has been localized to amino acids 140-160. An apoE 141-155 monomeric peptide and a dimeric 141-155 tandem peptide were synthesized and tested for their inhibition of 125I-LDL degradation by human fibroblasts and human monocytic-like cells, THP-1. The monomer had no activity at 250 microM, but the dimer inhibited 125I-LDL degradation by 50% at 5 microM. The inhibition was specific for the LDL receptor because the dimer did not inhibit the degradation of 125I-acetylated LDL by scavenger receptors expressed by phorbol ester-stimulated THP-1 cells. As reported for native apoE, amino acid substitutions of Lys-143----Ala, Leu-144----Pro, and Arg-150----Ala decreased the inhibitory effectiveness of the dimer. Furthermore, a trimer of the 141-155 sequence had a 20-fold greater inhibitory activity than the dimer. Studies with a radioiodinated dimer indicated that some of the inhibitory activity could be a result of the interaction of the dimer with LDL. However, direct binding of the 125I-dimeric peptide to THP-1 cells was observed as well. This binding was time-dependent, linear with increasing cell number, Ca(2+)- but not Mg(2+)-dependent, saturable, inhibited by lipoproteins, and increased by preculture of the cells in lipoprotein-depleted medium. Therefore, a synthetically prepared dimeric repeat of amino acid residues 141-155 of apoE binds the LDL receptor.  相似文献   

6.
The apolipoprotein E (apoE)-derived peptide (141-155)2 has a neurotoxic effect, implying that apoE itself could be a source of toxicity in Alzheimer's disease brain. We characterized the toxicity of this peptide on superior cervical ganglion (SCG) neurons and compared the death with the apoptotic death that occurs after nerve growth factor (NGF) deprivation in these cells. A dose of 10 microM apoE (141-155)2 resulted in the death of approximately 50% of the neurons within 24 h. Nuclear condensation and DNA fragmentation preceded the death. However, most inhibitors of NGF deprivation-induced death, including the caspase inhibitor Boc-aspartyl(O-methyl)fluoromethyl ketone and genetic deletion of bax-/-, had no effect on the toxicity. Inclusion of depolarizing levels of potassium did block the toxicity. Receptor-associated peptide (RAP), an antagonist for apoE receptors, did not protect cells in either SCG or hippocampal cultures. In addition, RAP had no effect on internalization of the apoE peptide. These data support the observation that apoE (141-155)2 is neurotoxic but suggest that the neurotoxicity is distinct from classical apoptosis or necrosis. Furthermore, these results indicate that the toxic effect may occur independently of members of the low-density lipoprotein receptor gene family.  相似文献   

7.
Pham T  Kodvawala A  Hui DY 《Biochemistry》2005,44(20):7577-7582
Apolipoprotein E (apoE) is a 34-kDa lipid-associated protein present in plasma and in the central nervous system. Previous studies have demonstrated that apoE has multiple functions, including the ability to transport lipids, regulate cell homeostasis, and inhibit lipid oxidation. The lipid binding domain of apoE has been localized to the carboxyl-terminal domain, whereas a cluster of basic amino acid residues within the N-terminal domain is responsible for its receptor binding activity. This study was undertaken to identify the domain in apoE responsible for its antioxidant activity. Results showed that apoE inhibits Cu(2+)-induced LDL oxidation by delaying conjugated diene formation in a concentration-dependent manner. Reductive methylation of lysine residues or cyclohexanedione modification of arginine residues in apoE abolished its ability to inhibit LDL oxidation. Additional studies showed that a 22-kDa peptide containing the N-terminal domain of apoE3 was more effective than a similar peptide with the apoE4 sequence in inhibiting Cu(2+)-induced LDL oxidation. In contrast, the 10-kDa peptide that contains the C-terminal domain of apoE was ineffective. Inhibition of Cu(2+)-induced LDL oxidation can also be accomplished with a peptide containing either a single sequence or a tandem repeat sequence of the receptor binding domain (residues 141-155) of apoE. Taken together, these results localized the antioxidant domain of apoE to its receptor binding domain and the basic amino acids in this domain are important for its antioxidant activity.  相似文献   

8.
CKS-17, a synthetic amino acid peptide homologous to a highly conserved region of retroviral transmembrane protein exerts a suppressive action on staphylococcal enterotoxin A (SEA)-induced the production of IFN-gamma by human peripheral blood mononuclear cells (PBMC) (Ogasawara et al., J. Immunol. 141, 615, 1988). This action has been shown in the present study to be preceded by dramatic clustering of PBMC. Clusters appear within 3 hr of exposure of PBMC to CKS-17; they are dose dependent, inhibited by cycloheximide, and require a temperature of 37 degrees C. The cells in the clusters are predominantly monocytes. Although it has been previously shown that CKS-17 inhibits monocyte-mediated killing by inactivating IL-1 (Kleinerman et al., J. Immunol. 139, 2329, 1987) and production of IL-2 by murine thymoma cells treated with IL-1 (Gottlieb et al., J. Immunol. 142, 4321, 1989), in the present study we show that IL-1 does not prevent clustering of PBMC by CKS-17. Using CKS-17 and highly purified monocytes or lymphocytes, profound alterations occur only with monocytes, as revealed by light or electron microscopy. SEA- or staphylococcal enterotoxin B-induced production of IFN-gamma is inhibited when highly purified monocytes pretreated with CKS-17 are cocultured with highly purified T lymphocytes. Thus, CKS-17 induces dramatic clustering of cells apparently by inducing alterations of monocytes but not lymphocytes, suggesting that CKS-17 may interfere with the capacity of monocytes to facilitate production of IFN-gamma by T lymphocytes.  相似文献   

9.
A synthetic 17 amino acid peptide (CKS-17) homologous to a highly conserved region of human and animal retroviral transmembrane proteins was investigated for its influence on the in vitro production of IFN-gamma from human peripheral mononuclear cells. The results showed that CKS-17 coupled to a carrier protein, BSA, inhibited production of IFN-gamma in a dose-dependent manner. Controls, consisting of BSA, which had undergone the coupling procedure or neurotensin coupled to BSA in an identical manner as CKS-17, showed no such inhibition. Reduction in IFN-gamma production could not be attributed to decreased viability of cells, delay of IFN-gamma production or to involvement of suppressor cells. Moreover, inhibition of IFN-gamma production was not related to the inhibition of DNA synthesis. The inhibition appeared to be a direct effect of CKS-17 on IFN-gamma-producing cells. Kinetic studies revealed that this suppression occurred when CKS-17 was introduced to the culture concurrent with or within 48 h after introduction of IFN inducers. Preincubation experiments showed that the presence of CKS-17 in the culture medium was not necessary to exert its inhibitory effect. These results suggest that a portion of retroviral envelope proteins possess important immunomodulatory actions.  相似文献   

10.
We studied the mode of action of the synthetic peptide CKS-17, which is a heptadecapeptide homologous to a highly conserved region of the immunosuppressive retroviral envelope protein p15E, as well as to envelope proteins of the human T cell leukemia virus I and II. Previous studies have established that CKS-17 conjugated to BSA (CKS-17-BSA) inhibited IL-1-mediated tumor toxicity in melanoma cells and proliferation in murine Th clones. We examined the effects of CKS-17-BSA on IL-1 action. CKS-17-BSA did not bind to IL-1, nor did it affect the number of IL-1 receptors, their binding affinity, or their ability to internalize IL-1. However, CKS-17-BSA inhibited production of IL-2 by murine thymoma cells treated with IL-1 or with 12-O-tetradecanoyl phorbol-13 acetate. The potent protein kinase C inhibitor, H7, also inhibited IL-1-mediated responses, while HA1004, a weak inhibitor of protein kinase C, did not. Protein kinase C activity in the cytosolic fraction prepared from thymoma cells was found to be inhibited by CKS-17-BSA in a dose-dependent manner. All of these findings are consistent with the idea that CKS-17-BSA inhibits IL-1-mediated responses by interfering with signal transduction through a protein kinase C pathway.  相似文献   

11.
CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.  相似文献   

12.
Croy JE  Brandon T  Komives EA 《Biochemistry》2004,43(23):7328-7335
LRP1 is a cell surface receptor responsible for clearing some 30 known ligands. We have previously shown that each of the three complete LDL receptor-homology domains of the LRP1 extracellular domain (sLRPs) binds apoE-enriched beta-VLDL particles. Here we show that two peptides from the N-terminal receptor binding domain of apoE, which are known to elicit a number of different cellular responses, bind to LRP1. Solution binding assays show that the two peptides, apoE(130-149) and apoE(141-155)(2), interact with each of the sLRPs (2, 3, and 4). Each peptide was found to exhibit the same solution binding characteristics as apoE-enriched beta-VLDL particles. Surface plasmon resonance analyses of the sLRP-apoE peptide interaction show that both peptides bind the sLRPs with K(D) values in the 100 nM range, a value similar to the effective concentration required for observation of the cellular responses. Consistent with results from mutagenesis studies of binding of apoE to LDLR, apoE(130-149,Arg142Glu) bound with a K(D) similar to that of the wild-type sequence, while apoE(130-149,Lys143Glu) showed a 10-fold decrease in K(D). Each of the peptides bound heparin, and heparin competed for sLRP binding.  相似文献   

13.
It has been shown previously that the retroviral envelope protein p15E suppresses certain monocyte and lymphocyte functions. In this paper, we describe the effects on natural killer (NK) activity of a synthetic peptide (CKS-17) with homology to a region of p15E conserved among numerous retroviruses. Enriched human NK cells were assayed against K562 tumor target cells in a 51Cr-release cytotoxicity assay. Pretreatment of NK cells with CKS-17 at concentrations as low as 1.5 microM, but not with equivalent concentrations of control materials, markedly and reproducibly suppressed NK lytic activity. Prior exposure of NK cells to interferon-alpha (IFN-alpha) at 1000 U/ml did not alter their sensitivity to CKS-17-induced inhibition. Pretreating NK cells with CKS-17 almost entirely diminished their responsiveness to IFN-alpha and IFN-gamma, but not to interleukin 2 (IL 2). Kinetics experiments demonstrated that CKS-17-mediated suppression of both endogenous and activated NK cells was reversible after 18 hr at 37 degrees C. Experiments designed to examine the CKS-17 mechanism of action revealed that the peptide bound to all Leu-11+ lymphocytes, as shown by two-color flow cytometry. CKS-17 did not, however, inhibit effector cell/target cell conjugate formation. These data suggest a new mechanism for immune suppression mediated by retroviruses; inhibition of NK function. They moreover imply that the CKS-17 peptide interferes with the lytic phase of NK cytolysis.  相似文献   

14.
The synthetic peptide CKS-17 has homology to a highly conserved region of the immunosuppressive retroviral envelope protein P15E, to envelope proteins of HTLV I, II, III, and to that encoded by an endogeneous C-type human retroviral DNA. CKS-17 inhibits the immune response of lymphocytes and the respiratory burst of human monocytes. Because P15E-related antigens are present in human malignant cell lines and cancerous effusions, we sought to determine the effect of CKS-17 on monocyte-mediated tumor cell lysis. Lysis of A375 tumor cells by lymphokine or lipopolysaccharide-activated human monocytes was inhibited by 10 microM CKS-17 (control, 79%; CKS-17-treated, 19%). Another synthesized peptide, CS-2, which has partial homology to CKS-17, failed to block monocyte-mediated killing. Thus, the inhibition by CKS-17 appeared to be specific. Because interleukin 1 (IL-1) is a cytocidal factor produced by activated monocytes, we also investigated the effect of CKS-17 on IL-1 production by monocytes and on direct IL-1-mediated cytotoxicity. CKS-17 did not block production or secretion of IL-1 by lipopolysaccharide- or interferon-gamma-activated monocytes. However, the direct cytocidal activity of both recombinant IL-1 alpha and IL-1 beta against A375 tumor cells was blocked by CKS-17. The cytotoxic activity of IL-1 was inhibited by CKS-17 if (a) IL-1 was preincubated with CKS-17 for 1 hr at 37 degrees C or (b) the A375 cells were incubated with CKS-17 for 1 hr prior to the addition of IL-1. CKS-17 also blocked IL-1-induced proliferation of murine thymocytes, the D10 T cell line, and an IL-1-responsive astrocytoma cell line. These data suggest that CKS-17 may be a potent inhibitor of IL-1.  相似文献   

15.
The highly conserved region within the retroviral transmembrane envelope proteins has been implicated in a number of retrovirus-associated mechanisms of immunosuppression. CKS-17, a synthetic peptide representing the prototypic sequence of the immunosuppressive domain, has been found to suppress numerous immune functions, disregulate cytokines, and elevate intracellular cAMP. In this report we show that using a human monocytic cell line THP-1, CKS-17 activates mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase 1 and 2 (ERK1/2). Kinetic studies show that CKS-17 induces an acute increase of ERK1/2 activity followed by a rapid decrease and then a second sustained increase of ERK1/2. CKS-17 also activates MAP kinase/ERK kinase (MEK) with a similar induction pattern. Mutant THP-1 cells isolated in our laboratory, in which CKS-17 exclusively fails to activate cAMP, did not show the transient decrease of CKS-17-induced ERK1/2 phosphorylation. Pretreatment of THP-1 cells or mutant THP-1 cells with cAMP analog or forskolin followed by treatment with CKS-17 showed no activation of MEK or ERK1/2. These results indicate that CKS-17 activates the MEK/ERK cascade and that there is a cross-talk between CKS-17-mediated MEK/ERK cascade and cAMP in that the MEK/ERK cascade is negatively regulated by cAMP. These data present a novel molecular mechanism(s) by this highly conserved retroviral immunosuppressive component.  相似文献   

16.
A synthetic 17-amino acid peptide (CKS-17) homologous to a highly conserved region of human and animal retroviral transmembrane proteins has been found to exhibit suppressive properties for numerous immune functions. It has been shown that CKS-17 causes an imbalance of human types 1 and 2 cytokines and inhibition of the immune responses of lymphocytes, monocytes, and macrophages. CKS-17 induced increased intracellular levels of cAMP, which plays an important role in regulation of cytokine biosynthesis. In this study, using a Jurkat T-cell line and Western blot analysis, CKS-17 induced phosphorylation of PLC-gamma1, Raf-1, MEK and ERK1/2. Using a PLC selective inhibitor U73122 or PLC-gamma1-deficient Jurkat cell line, phosphorylation induced by CKS-17 of ERK1/2, PLC-gamma1, or Raf-1, respectively, were undetectable or significantly reduced. Reintroduction of PLC-gamma1 into the PLC-gamma1-deficient Jurkat cells restored the phosphorylation of ERK1/2 and PLC-gamma1 induced by CKS-17. Further, pretreatment of Jurkat cells with PKC inhibitors blocks the phosphorylation of Raf-1, MEK, and ERK1/2 induced by CKS-17. These results indicate that CKS-17 induces the PLC-gamma1-PKC-Raf-1-MEK-ERK1/2 signaling pathway.  相似文献   

17.
Synthetic peptides based on the VP1 proteins of two serotypes of foot-and-mouth disease virus (FMDV) and having the general formula C-C-(200-213)-P-P-S-(141-158)-P-C-G induce heterologous as well as homologous protection against challenge. Substitution of the sequence consisting of residues 200 to 213 (200-213 sequence) with a second copy of the homologous 141-158 sequence (i.e., homodimers) resulted in failure of either serotype peptide to protect heterologously. The antiviral and antipeptide titers of sera from guinea pigs immunized with the homodimeric 141-158 peptides showed serotype specificity and, with the data from the heterodimeric peptide vaccines, suggested that the C-terminal 141-158 sequence was more effectively recognized by the immune system than the N-terminal sequence. Whereas heterologous antiviral titers as measured by enzyme-linked immunosorbent assay and virus neutralization tests have not been observed with sera from cross-protected animals, epitope-mapping studies established that there was heterologous recognition of an octapeptide within the 200-213 sequence. That the 200-213 sequence was required for the induction of heterologous protection was also confirmed with a number of peptides, including hybrids based on the 200-213 sequence of one virus and the 141-158 sequence of a second virus. Thus, peptides of the general formula given above induce serotype-specific and serotype-cross-reactive protective antibodies and are unique in their induction of significant levels of heterologous protection, a property which has never been reported for whole FMDV vaccines.  相似文献   

18.
Summary CKS-17 is a heptadecapeptide corresponding to a region highly conserved in retroviral transmembrane proteins such as p15E. Because a relationship had previously been determined between p15E and immunosuppressive tumor cell products, we examined the effect of CKS-17, control peptides and conjugates thereof on the expression of cell-mediated immunity (delayed-type hypersensitivity, DTH) in mice. Conjugates of CKS-17 inhibited DTH reactions to sheep erythrocytes in the feet of mice. The degree of inhibition was dose-dependent. Unconjugated CKS-17 had almost no effect, and control peptide conjugates had no inhibitory effect. Immunization of mice with CKS-17 conjugates, but not with control conjugates, rendered them resistant to the depression of DTH reactions, not only by CKS-17 conjugates, but also by products of cultured tumor cells. CKS-17 conjugates, but not control conjugates, also depressed the cellular inflammatory reactions induced in mouse footpads by concanavalin A (ConA) and immunized mice against the depression of ConA reactions by products of cultured tumor cells. Injections of globulin from sera of mice immunized with CKS-17 conjugates conferred upon normal recipients resistance to the depression of footpad reactions to ConA by products of cultured tumor cells. Globulin from sera of normal mice or control immunized mice did not confer such resistance. Thus conjugates of a synthetic peptide not only mimic the immunosuppressive effects of tumor products in vivo, but can also immunize mice against those effects.  相似文献   

19.
Apolipoprotein E (apoE) is known to inhibit cell proliferation; however, the mechanism of this inhibition is not clear. We recently showed that apoE stimulates endothelial production of heparan sulfate (HS) enriched in heparin-like sequences. Because heparin and HS are potent inhibitors of smooth muscle cell (SMC) proliferation, in this study we determined apoE effects on SMC HS production and cell growth. In confluent SMCs, apoE (10 microg/ml) increased (35)SO(4) incorporation into PG in media by 25-30%. The increase in the medium was exclusively due to an increase in HSPGs (2.2-fold), and apoE did not alter chondroitin and dermatan sulfate proteoglycans. In proliferating SMCs, apoE inhibited [(3)H]thymidine incorporation into DNA by 50%; however, despite decreasing cell number, apoE increased the ratio of (35)SO(4) to [(3)H]thymidine from 2 to 3.6, suggesting increased HS per cell. Purified HSPGs from apoE-stimulated cells inhibited cell proliferation in the absence of apoE. ApoE did not inhibit proliferation of endothelial cells, which are resistant to heparin inhibition. Analysis of the conditioned medium from apoE-stimulated cells revealed that the HSPG increase was in perlecan and that apoE also stimulated perlecan mRNA expression by >2-fold. The ability of apoE isoforms to inhibit cell proliferation correlated with their ability to stimulate perlecan expression. An anti-perlecan antibody completely abrogated the antiproliferative effect of apoE. Thus, these data show that perlecan is a potent inhibitor of SMC proliferation and is required to mediate the antiproliferative effect of apoE. Because other growth modulators also regulate perlecan expression, this may be a key pathway in the regulation of SMC growth.  相似文献   

20.
PKI-(5-24)-amide is a 20-residue peptide with the sequence, Thr5-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-A la-Ile-His- Asp24-NH2, that corresponds to the active portion of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992). Amino acid residues in PKI-(5-24)-amide responsible for the potent inhibition (Ki = 2.3 nM) of the catalytic subunit of protein kinase were further investigated using deletion and substitution analogs of the synthetic peptide. Residues 5, 23, and 24 were not required for activity since the 17-residue PKI-(6-22)-amide retained full potency. Sequential removal of the first seven amino acids from the NH2 terminus of PKI-(5-24)-amide caused a progressive 50-fold loss of inhibitory potency. In contrast, substitution of either Thr6, Asp9, or Ile11 with alanine, or Ala8 by leucine, in PKI-(5-22)-amide produced less than 3-fold decreases in potency. Of the 2 aromatic residues in PKI-(5-22)-amide, the individual substitution of Phe10 and Tyr7 by alanine caused, respectively, 90- and 5-fold decreases in inhibitory potency, demonstrating important roles for each. This NH2-terminal portion of the peptide is believed to contain a significant portion of alpha-helix. Many recognition or structural determinants are also essential in the COOH-terminal portion of PKI-(5-22)-amide. In addition to the basic subsite provided by the three arginines, several other of the residues are critical for full inhibitory potency. Substitution of Ile22 by glycine in either PKI-(5-22)-amide or PKI-(14-22)-amide lowered the inhibitory potency by 150- and 50-fold, respectively. Separate replacement of Gly17 or Asn20, in either PKI-(5-22)-amide or PKI-(14-22)-amide, caused 7-15-fold decreases in potency. Substitution of both Gly17 and Asn20 together (in PKI-(14-22)-amide) produced a synergistic loss of inhibitory activity. [Leu13,Ile14]PKI-(5-22)-amide, a doubly substituted analog exhibited a 42-fold increase in Ki value. We conclude that Ser13 and/or Gly14, Gly17, Asn20, and Ile22 each contribute important features to the binding of these inhibitory peptides to the protein kinase, either by providing recognition determinants, inducing structure, and/or allowing essential peptide backbone flexibility.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号