首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female mice were given different dosages (0, 3.0, 7.5, 15.0, or 30 muCi/ml) of tritium in their drinking water continuously from 3 to 7 weeks of age to assess the effects on germ cell chromosomes. At 8-9 weeks of age, mice were superovulated and metaphase II oocytes were processed and C-banded for cytogenetic analyses. Chromatid acentric fragments were the only type of structural aberration detected, and their incidence was higher in controls than in any of the tritiated water (HTO) groups. Analysis of numerical chromosomal aberrations revealed that the incidence of hypoploid (N = 19) oocytes was higher in oocytes from mice who drank HTO as compared with controls. However, the effects of HTO upon aneuploidy induction was not definitive due to the increase the incidence of aberrations in mouse oocytes can be related to the low dose rate resulting from chronic HTO exposure and possibly death of tritium-damaged cells.  相似文献   

2.
The purpose of this study was to determine whether adaptation against neoplastic transformation could be induced by exposure to very low-dose-rate low-LET radiation. HeLa x skin fibroblast human hybrid cells were irradiated with approximately 30 kVp photons from an array of (125)I seeds. The initial dose rate was 4 mGy/day. Cell samples were taken at four intervals at various times over a period of 88 days and assayed for neoplastic transformation and the presence of reactive oxygen species (ROS). The dose rate at the end of this treatment period was 1.4 mGy/day. Transformation frequencies and ROS levels were compared to those of parallel unirradiated controls. At the end of 3 months and an accumulated dose of 216 mGy, cells treated with very low-dose-rate radiation were exposed to a high-dose-rate 3-Gy challenge dose of (137)Cs gamma rays, and the effects compared with the effect of 3 Gy on a parallel culture of previously unirradiated cells. Cells exposed to very low-dose-rate radiation exhibited a trend toward a reduction in neoplastic transformation frequency compared to the unirradiated controls. This reduction seemed to diminish with time, indicating that the dose rate, rather than accumulated dose, may be the more important factor in eliciting an adaptive response. This pattern was in general paralleled by a reduction of ROS present in the irradiated cultures compared to controls. The very low-dose-rate-treated cells were less sensitive to the high challenge dose than unirradiated controls, suggesting the induction of an adaptive response. Since there was a suggestion of a dose-rate threshold for induction suppression, a second experiment was run with a fresh batch of cells at an initial dose rate of 1 mGy/day. These cells were allowed to accumulate 40 mGy over 46 days (average dose rate=0.87 mGy/day), and there was no evidence for suppression of transformation frequency compared to parallel unirradiated controls. It is concluded that doses of less than 100 mGy delivered at very low dose rates in the range 1 to 4 mGy/day can induce an adaptive response against neoplastic transformation in vitro. When the dose rate drops below approximately 1 mGy/day, this suppression is apparently lost, suggesting a possible dose-rate-dependent threshold for this process.  相似文献   

3.
We have measured gamma-ray-induced neoplastic transformation in C3H10T1/2 mouse embryo cells irradiated at an average 10 cGy/day throughout the useful life span of these cells for transformation studies. At cumulative total doses of 50, 150, 300, and 450 cGy, samples of cells were assayed for cell survival and neoplastic transformation with or without the administration of 0.1 micrograms/ml of 12-O-tetradecanoylphorbol-13-acetate (TPA) starting 24 h after the irradiation. The results indicate that, at a dose rate of 10 cGy/day, the rate of induction of neoplastic transformation is reduced by a factor of thirteen compared to that at 100 cGy/min. Still, frequencies above the background level are observed. These results are consistent with previous data which, at 144 cGy/day (0.1 cGy/min), showed that radiation-induced initiation events could be repaired during exposure, thus reducing the frequency of transformation from that observed at 100 cGy/min [A. Han et al., Cancer Res. 40, 3328-3332 (1980)]. Although the addition of TPA after the delivery of a particular dose at 10 cGy/day produced a significant increase in the frequency of neoplastic transformation, the degree of enhancement was less than after higher-dose-rate exposures [C.K. Hill et al., Radiat. Res. 109, 347-351 (1987)]. These results indicate that during 7 weeks of exposure, the repair of radiation-induced initiation was extensive but not complete, and suggest that a significant part of the damage persists which can be promoted by TPA. These observations support the inference that initiation and promotion are not tightly coupled and are probably independent processes.  相似文献   

4.
Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates an initial step in cancer induction. Although previous investigations indicated a synergistic increase in transformation yields in the cells exposed to protons followed by HZE particles, these experiments did not differentiate between the effect of splitting of the dose into two fractions and that of changing the ion beams. To test this, we irradiated cells with split doses of either protons or HZE particles, then measured clonogenic survival and neoplastic transformation, as measured by colony formation in semi-solid soft agar medium. The data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion beam H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 min later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.  相似文献   

5.
A total of 2,377 C 57 Bl/6M mice were assigned to control groups and experimental groups exposed to tritiated water administered as a pulse injection or in drinking water, at a dose of 1.0 microCi per injection or per ml of drinking water. Weanlings were observed for the duration of life span. Data analysis was based on two coefficient estimates (1) individual carcinogenic induction coefficient and (2) specific tumorigenic induction coefficient. The carcinogenic potency of tritium was found to be dual in nature in enhancing the absolute induction of lymphocytic lymphomas in both sexes as well as their relative induction in competition with reticulo-endothelial tumors of other types.  相似文献   

6.
7.
In order to study the mutagenic effect of exposure to tritium, Drosophila melanogaster larvae were treated with tritiated water (3H2O) or tritiated thymidine (3H-TdR) during development. Dose rates ranged from 0.0058 to 0.058 rad/h per nucleus for 3H-TdR and from 0.049 to 0.122 rad/h for 3H2O. Induction of mutations was measured by the appearance of somatic mutations in the eyes of an unstable strain of Drosophila melanogaster. Both substances caused a significant increase in mutation frequency. With the assumption that each mutation observed in this assay is caused by one DNA break, the effectiveness of tritium to create DNA breaks is estimated to be 0.20 breaks per decay for 3H-TdR and 0.27 breaks per decay for 3H2O.  相似文献   

8.
9.
Unexpected cytolysis was encountered when nonactivated murine peritoneal macrophages were cultured with [3H]TdR-prelabeled syngeneic or allogeneic tumor cells at a 10:1 ratio. The level of specific cytolysis reached 70% within 48 hr of cocultivation. Similar killing was observed whether the macrophages were derived from untreated, thioglycollate-treated, or germ-free mice. Cytolytic activity was also demonstrated when bone marrow-derived or peritoneal macrophages from 9- and 5-day in vitro cultures, respectively, were employed rather than freshly harvested peritoneal macrophages. Thus, the macrophage-mediated killing was neither the result of in vivo preactivation nor a consequence of the presence of lymphocytes in the assay. Moreover, macrophages derived from different strains caused similar effects. Our study revealed that the neoplastic target cell cultures susceptible to cytolysis by nonactivated macrophages were contaminated with mycoplasma. A mycoplasma was isolated from the supernatant of a culture of the A9HT fibrosarcoma line, identified as Mycoplasma orale, and cultivated. Addition of viable mycoplasma from that isolate to mixed cultures of thioglycollate-elicited macrophages and [3H]TdR-prelabeled mycoplasma-free target cells resulted in specific cytolysis of transformed A9 cells, but not of normal mouse fibroblasts. The level of macrophage-dependent cytolysis correlated with the number of viable mycoplasma cells added and was higher than that attained by activation with LPS at optimal concentration. Similar specific cytolysis was observed with heat-killed mycoplasmas. Our results demonstrate that mycoplasmas may cause selective macrophage-mediated cytolysis of neoplastic but not of normal target cells, perhaps via activation of the macrophages. It is suggested that undetected infection of experimental systems by mycoplasmas may account for some reports on lysis of neoplastic cells by nonactivated macrophages.  相似文献   

10.
Severe combined immunodeficiency (SCID) cells are hypersensitive to killing by ionizing radiation because of deregulation of DNA-dependent protein kinase (DNA-PK) and a concomitant deficiency in the repair of DNA double-strand breaks. The effect of this condition on the neoplastic transformation of SCID fibroblasts, designated SCID 3T1, has been investigated. The spontaneous transformation rate was approximately 2 x 10(-5) at early passages and increased up to approximately 7 x l0(-3) at later passages. The radiation survival curves of transformed cells had thresholds and therefore appeared to be qualitatively similar to the survival curves of C3H 10T(1/2) mouse fibroblast cells, but the initial slopes were steeper. In contrast, per unit dose, SCID cells were more sensitive to transformation than 10T(1/2) cells. Eight transformed clones were tested for tumorigenicity, and all produced fibrosarcomas in athymic nude mice. Properties associated with the tumor suppressor Trp53 (formerly known as p53) were examined in three of the clones. In these clones, although Trp53 protein was overexpressed, a lower expression of Cdkn1a (formerly known as p21, Cip1) protein was observed compared to parental cells. The expression of Trp53 and Cdkn1a and the G(1)-phase arrest (one set of data on G(1)-phase delay is included as an example) was not induced by ionizing radiation in these transformed clones; each clone carried a point mutation in Trp53. This suggests that the deficiency in the repair of DNA double-strand breaks increased the tumorigenicity and the genomic instability of transformed SCID cells.  相似文献   

11.
12.
13.
There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells.  相似文献   

14.
Summary Depending on the precise conditions and cellular starting material, phorbol-13-myristate-12-acetate (PMA) can induce or suppress the transformation of NIH 3T3 cells. In sublines that do not undergo rapid transformation, exposure to PMA over the course of several weeks accelerated the process, while sublines that are primed for density-mediated transformation respond to PMA with a suppression of the process. This study examines the latter phenomenon. Within 1 h of exposure to 0.02μg/ml PMA, sparse cultures had undergone a morphological transition after which the cells appeared smaller and the processes thinner. These sublines exhibited a two-to sixfold increase in the saturation density achieved in 2% calf serum (CS). Phorbol ester analogs with hydrocarbon substitutions of 4 or more carbons at positions 12 and 13 of the phorbol nucleus had a similar effect as PMA on the saturation density. High concentrations of PMA (1μg/ml) induced the formation of cell aggregates (pseudofoci) that resembled transformed foci in their high local density, but unlike transformed foci, did not reinitiate focus formation if the cells were diluted and replated without PMA as secondary cultures. PMA inhibited the processes of neoplastic transformation and progression that occur readily in these NIH 3T3 sublines when they reach high cell density. I suggest that such changes occur because PMA abolishes the selection pressure at high densities that favors the transformation of some cells in heterogeneous populations. Induction of transformation by PMA (reported previously) occurs after much longer exposures in sublines that are relatively resistant to rapid density-mediated transformation. These results are discussed in the context of progressive state selection, a concept that has been developed to account for spontaneous transformation in this system.  相似文献   

15.
16.
17.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号