首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of the fact that shallow-water meiobenthos of the White Sea is a relatively well studied, the information on meiobenthic fauna from the deepest part of this sea is still very scanty. This study represents the first major study of the meiobenthos from the deep White Sea. The composition of the meiobenthic community, density and vertical distribution was studied during four sampling occasions in the deepest part of the Kandalaksha Depression (White Sea) in July 1998, October 1998, May 1999 and November 1999. Samples were collected from a depth of 270?m with the aid of a multicorer. The total density of meiobenthos in 1998 was twice than in 1999 (on average, 2,356 and 1,464 ind./10?cm2, respectively). The most abundant meiobenthic group was Foraminifera (59?%), followed by Nematoda (26?%) and Harpacticoida (7?%). These relative and absolute abundance values are comparable with the same depth interval in Arctic and temperate regions. The density of foraminiferans and nematodes was higher in the autumn and lower in the summer. This may be explained by the mass propagation of these animals in the autumn season: the density of juvenile nematodes and small-sized foraminiferans increased significantly in the 1- to 4-cm-deep sediment layers in autumn. The size range of the meiobenthos in the deepest part of the White Sea was also comparable to deep-sea meiobenthos (the 63–125 and 125–250?μm size classes were most dominant).  相似文献   

2.
The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.  相似文献   

3.
Sediment samples collected during the expedition “Arctic Ocean `96” with the Swedish ice-breaker ODEN were investigated to estimate for the first time heterotrophic activity and total microbial biomass (size range from bacteria to small metazoans) from the perennially ice-covered central Arctic Ocean. Benthic activities and biomass were evaluated analysing a series of biogenic sediment compounds (i.e. bacterial exoenzymes, total adenylates, DNA, phospholipids, particulate proteins). In contrast to the very time-consuming sorting, enumeration and weight determination, analyses of biochemical sediment parameters may represent a useful method for obtaining rapid information on the ecological situation in a given benthic system. Bacterial cell numbers and biomass were estimated for comparison with biochemically determined biomass data, to evaluate the contribution of the bacterial biomass to the total microbial biomass. It appeared that bacterial biomass made up only 8–31% (average of all stations = 20%) of the total microbial biomass, suggesting a large fraction of other small infaunal organisms within the sediment samples (most probably fungi, yeasts, protozoans such as flagellates, ciliates or amoebae, as well as a fraction of small metazoans). Activity and biomass values determined within this study were generally extremely low, and often even slightly lower than those given for other deep oceanic regions, thus characterizing the seafloor of the central Arctic Ocean as a “benthic desert”. Nevertheless, some clear trends in the data could be found, e.g. generally sharply decreasing values within the sediment column, a vague tendency for declining values with increasing water depth of sampling stations, and also differences between various Arctic deep-sea regions. Received: 16 May 1997 / Accepted: 28 August 1997  相似文献   

4.
孟昭翠  徐奎栋 《生态学报》2013,33(21):6813-6824
利用Ludox-QPS方法并结合沉积环境因子的综合分析,研究了2011年4月采自长江口及东海10个站位以底栖硅藻、纤毛虫和异养小鞭毛虫为代表的微型底栖生物及小型底栖生物的组成、丰度和生物量、分布及生态特点。结果表明,底栖硅藻的丰度 (5.92 ? 104 ind/10 cm2) 和生物量 (83.29 ?g C/10 cm2) 远高于纤毛虫 (丰度为1036 ind/10 cm2,生物量为3.33 ?g C/10 cm2)、异养小鞭毛虫 (丰度为4451 ind/10 cm2,生物量为2.51 ?g C/10 cm2) 和小型底栖生物 (丰度为1947 ? 849 ind/10 cm2,生物量为49.01? 22.05 ?g C/10 cm2)。在鉴定出的11个小型底栖生物类群中,线虫占小型底栖生物总丰度的90%和总生物量的37%。底栖硅藻生物量在长江口及东海海域呈由近岸向外海逐渐降低的分布特点,而底栖纤毛虫、异养小鞭毛虫及小型底栖生物的分布则正相反。在垂直分布上,76%的硅藻和80%的线虫分布在0–2 cm沉积物表层,仅1%的硅藻和6%的线虫分布在5–8 cm分层。统计分析表明,底栖硅藻的现存量与沉积物中叶绿素a含量呈极显著的正相关,与底层水温度呈弱的正相关;该海域底栖原生动物和小型底栖生物的分布受多个因子而非单一环境因子的共同作用。对比分析表明,长江口及东海单位体积沉积物中的硅藻丰度较水体中的硅藻丰度高2个数量级,沉积物中相当部分的叶绿素a含量可能系底栖硅藻所贡献;表层8 cm沉积物中纤毛虫的丰度约是上层30 m水柱中纤毛虫丰度的30倍,生物量约是后者的40倍。尽管纤毛虫在生物量上远小于小型底栖生物,但其估算的生产力约是后者的3倍;而异养小鞭毛虫由于个体更小,其周转率可能较纤毛虫更高。长江口及东海陆架区原生动物和小型底栖生物的高现存量及生产力预示着其在该海域生态系统中的重要作用。  相似文献   

5.
Hasemann C  Soltwedel T 《PloS one》2011,6(12):e29152
The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure “sponge” on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments.  相似文献   

6.
Surface primary productivity and carbon flux in the Arctic Seas are higher along the warm Spitsbergen Water Current than along the ice-infested East Greenland Current. These contrasting oceanographic conditions are reflected in the deep-sea environment and may shape nematode assemblages. However, the paucity of samples in the Arctic deep seas precludes any regional scale assessment. In the present study, nematode assemblages were investigated in relation to a range of environmental variables along the 2,000 m isobath between latitudes 72°N and 79°N for both East and Western margins of the northern North Atlantic. Results showed that both margins had distinct environmental characteristics, with respect to chloroplastic pigments, sediment water content, sediment-bound organic matter, phospholipids and particulate proteins. Nematode assemblages varied according to these environmental changes. Along the more oligotrophic western margin, chloroplastic pigments increased towards the North, while the other environmental variables, nematode abundances and species richness decreased. In contrast, along the eastern margin, we observed higher quantities of organic matter and particulate protein, which supported higher abundance and species richness. Nematode assemblages along both margins varied according to food availability with species composition more variable in areas with lower amounts. Seventy percent of the species occurred in both margins indicating a low turnover of species. The present results support the hypothesis of a positive latitudinal gradient across the North Atlantic and further suggest that contemporary climate and recent ecological processes may predict nematode diversity patterns at larger scales.  相似文献   

7.
The size structure of deep-sea meio- and macrobenthos was studied using 12 USNEL box corer samples collected in the Western Pacific. Both macro- and meiobenthos decreased in abundance with increasing water depth, as expected, but contrary to previous findings, the rate of decrease did not differ significantly between the two size classes of organisms. The median size index of total meiobenthos decreased with increasing water depth, while when the vertical distribution of organisms in the sediment was considered, such a trend was restricted to the organisms found in the upper 1 cm layer. In contrast, the median size of the nematodes increased with increasing water depth, and a possible cause for this correlation is discussed.  相似文献   

8.
Human activities have the potential to alter the diversity and composition of biological communities in natural environments, which can cause changes in ecosystem functioning. This has led to the development of environmental assessment techniques that take into account species identity, as species can contribute differently to various ecosystem processes. Biological Traits Analysis (BTA) is used to compare the abundances of specific biological traits in samples to produce information about how ecosystem functioning may change across a specific terrestrial or aquatic system. In the present study, BTA was used to assess the influence of municipal wastewater effluent on benthic marine communities in near shore soft sediments in four locations across the Canadian Arctic Territory of Nunavut, Canada. Shifts in trait composition were assessed relative to indicators of sediment enrichment (sediment chlorophyll, organic content, degree of anoxia), and natural variation in habitat characteristics (water depth, porosity, average grain size) at a site receiving wastewater and a reference site in each sampling location. The results indicated a mild enrichment effect of wastewater, as evidenced by changes in trait composition at three of the four sites that received wastewater inputs. However, the amount of variance in trait composition explained by metrics of wastewater enrichment in these locations were generally equal to or lower than the amount of variance explained by sediment characteristics related to natural processes. These results provide greater insight into the underlying causes and consequences of human activities than more traditional methods for environmental impact assessment, and can be directly applied in a management context.  相似文献   

9.
Field studies on the occurrence of meiobenthos in the water column above intertidal sandflats have been performed near the Island of Sylt in the northern Wadden Sea. Swimming meiobenthos was strongly dominated by harpacticoid copepods. Many of them have a semiplanktonic life-style. They rest in superficial sediment layers at low tide and swin in the water column at high tide. Swimming activity correlated negatively with light. The abundance in the water column was one order of magnitude higher during the night. Strong currents caused by storm tides significantly decreased meiobenthic abundance in the water column. Light and flow being constant, no significant changes of meiobenthic abundance per unit area occurred over a tidal cycle. Since holoplankton and meroplankton abundances correlated positively with the height of the water column, semiplanktonic meiobenthos may dominate the mesozooplankton in shallow waters. On an average, emergence of meiobenthos increased the mesozooplanktonic biomass by about 2% during diurnal high tides over the entire tidal cycle, and by about 50% during nocturnal high tides. Because of seasonal cycles of the dominant harpacticoids, this high contribution to planktonic biomass may be a summer phenomenon.  相似文献   

10.
Summary High Arctic meiofaunal distribution, standing stock, sediment chemistry and benthic respiratory activity (determined by sediment oxygen consumption using a shipboard technique) were studied in summer 1980 on the NE Svalbard shelf (northern Barents Sea) and along a transect into the Nansen Basin, over a depth range of 240–3920 m. Particulate sediment proteins, carbohydrates and adenylates were measured as additional measures of benthic biomass. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigments (chlorophylls, pheopigments) were assayed. Pigment concentrations were found comparable to values in sediments from the boreal and temperate N-Atlantic. Meiofauna, which was abundant on the shelf, decreased in numbers and biomasses with increasing depth, as did sediment proteins, carbohydrates, adenylates and sediment oxygen consumption. Meiofaunal abundances and biomasses within the Nansen Basin were comparable with those observed in abyssal sediments of the North Atlantic. Nematodes clearly dominated in metazoan meiofauna. Protozoans were abundant in shelf sediments. Probably in response to the sedimentation of the plankton bloom, meiofauna abundance and biomass as well as sediment proteins, carbohydrates and adenylates were significantly correlated to the amount of sediment bound chloroplastic pigments, stressing the importance of food quantity to determine benthic stocks. Ninety-four percent of the variance in sediment oxygen consumption were caused by chloroplastic pigments. Benthic respiration, calculated per unit biomass, was 3–10 times lower than in the East Atlantic, suggesting low turnover rates in combination with a high standing stocks for the high Arctic benthos.  相似文献   

11.
Marine subsurface eukaryotes: the fungal majority   总被引:1,自引:0,他引:1  
Studies on the microbial communities of deep subsurface sediments have indicated the presence of Bacteria and Archaea throughout the sediment column. Microbial eukaryotes could also be present in deep-sea subsurface sediments; either bacterivorous protists or eukaryotes capable of assimilating buried organic carbon. DNA- and RNA-based clone library analyses are used here to examine the microbial eukaryotic diversity and identify the potentially active members in deep-sea sediment cores of the Peru Margin and the Peru Trench. We compared surface communities with those much deeper in the same cores, and compared cores from different sites. Fungal sequences were most often recovered from both DNA- and RNA-based clone libraries, with variable overall abundances of different sequence types and different dominant clone types in the RNA-based and the DNA-based libraries. Surficial sediment communities were different from each other and from the deep subsurface samples. Some fungal sequences represented potentially novel organisms as well as ones with a cosmopolitan distribution in terrestrial, fresh and salt water environments. Our results indicate that fungi are the most consistently detected eukaryotes in the marine sedimentary subsurface; further, some species may be specifically adapted to the deep subsurface and may play important roles in the utilization and recycling of nutrients.  相似文献   

12.
The meiobenthos along a depth transect of oligotrophic sediments in the Arctic Laptev Sea was studied. The meiobenthos followed the general trends reported from other studies: densities decreased with depth in relation to the more limited supply of degradable organic matter at greater depths. Although the sediments along the transect were poor in organic matter in comparison with the NE Atlantic, the densities fitted well with the meiobenthic densities reported from the latter area. It is suggested that the meiobenthos in the cold polar waters is adapted to this extreme environment by a rapid response to short food pulses to the sediments. Nematodes were identified up to genus level and assigned to trophic groups. A total of 32 families comprising 95 genera were found along the transect. The communities were dominated by deposit feeders whose importance increased with depth. Both TWINSPAN and CCA analyses revealed a community shift along the depth transect: a shelf community dominated by Microlaimus and Chromadora could be distinguished from a slope community dominated by Monhystera and Leptolaimus. Generic diversity decreased with depth. Received: 15 March 1997 / Accepted: 29 June 1997  相似文献   

13.
Based on visual observations in the Nyegga (Norwegian Sea) methane seep area we defined arbitrary boundaries and defined the following types of microbiotopes: the siboglinid field, bacterial mat, and background sediment. The metazoan meiobenthos consisted of 14 major taxa; the Nematoda dominated at seven of the eight stations. The taxonomic diversity of metazoan meiobenthos in the siboglinid fields was higher than that in the background bottom area. The average population density in siboglinid microbiotope exceeded the abundance of organisms in the background sediments by 1.3 times. The nematode population and total meiobenthos varied in bacterial maths. The modal size fraction of meiobenthos and nematodes regardless of microbiotopes fell on samples that were obtained on sieves with 63–125 μm mesh sizes. In total, 88 nematod species belonging to 26 families and 63 genera were recorded. The species diversity decreased in the direction from the background biotope to siboglinid fields and further to bacterial mats.  相似文献   

14.
Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.  相似文献   

15.
Fluorescence in situ hybridization (FISH) was applied to detect ingested natural bacteria within the food vacuoles of ciliates harvested from the natural sediment. In addition to this important qualitative aspect, FISH was also successfully used to measure the bacterivory of a culture of the ciliate Tetrahymena pyriformis on natural field sediment bacteria. In this feeding experiment, we compared the FISH technique with the only available alternative technique using fluorescently stained sediment (FS-sediment). The ingestion rate of unstained sediment bacteria determined by FISH was 4.6 bacteria per ciliate and hour. In contrast, Tetrahymena pyriformis cells that fed on bacteria from FS-sediment ingested 12.7 bacteria per ciliate and hour. Bacterial abundances in the sediment were equal in both sediment types (4 x 10(8) cells g sediment dry weight(-1)) when determined by DAPI counts. However, when analyzed using DTAF-counts, the number of bacteria in the FS-sediment increased to 9.7 x 10(8) cells g sediment dry weight(-1). From our findings we conclude that bacterivory by ciliates is overestimated when FS-sediment is used because DTAF stains bacteria as well as protein-containing detritus particles, which are also ingested by many ciliates. In contrast, FISH is a direct, a posteriori method that specifically stains phylogenetic lineages, e.g. eubacteria, after ingestion and thereby avoids a false determination of the number of ingested bacteria. Thus this method can also be used for the study of natural ciliate bacterivory in benthic systems.  相似文献   

16.
Whereas fungi in terrestrial soils have been well studied, little is known of them in deep-sea sediments. Recent studies have demonstrated the presence of fungal hyphae in such sediments but in low abundance. We present evidence in this study that one of the apparent reasons for the poor detection of fungi in deep-sea sediments is their cryptic presence in macroaggregates. Fungal biomass carbon from different core sections of deep-sea sediments from approximately 5000 m depth in the Central Indian Ocean was estimated based on direct microscopic detection of fungal mycelia. Treatment of sediment samples with ethylenediamine tetra-acetic acid (EDTA) enabled more frequent detection and significantly higher biomass than in samples without such treatment. Treatment with EDTA resulted in detecting various stages of breakdown of aggregates in the sediments, gradually revealing the presence of fungal hyphae within them. Experimental studies of a deep-sea, as well as three terrestrial isolates of fungi, showed that all could grow at 200 bar and 5 degrees C in a nutrient medium and in deep-sea sediment extract. Hyphae of fungi grown in sediment extract under the above conditions showed various stages of accretion of particles around them, leading to the formation of aggregates. Such aggregates showed the presence of humic material, carbohydrate, and proteins. We suggest that fungi in deep-sea sediments may be involved in humic aggregate formation by processes very similar to those in terrestrial sediments. The importance of such a process in carbon sequestration and food web in the deep sea needs to be examined.  相似文献   

17.
A colonisation experiment was performed in situ at 2500 m water depth at the Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of deep-sea nematodes to disturbed, newly available patches, enriched with organic matter. Cylindrical tubes,laterally covered with a 500 μm mesh, were filled with azoic deep-sea sediment and (13)C-labelled food sources (diatoms and bacteria). After 10 days of incubation the tubes were analysed for nematode response in terms of colonisation and uptake. Nematodes actively colonised the tubes, however with densities that only accounted for a maximum of 2.13% (51 ind.10 cm(-2)) of the ambient nematode assemblages. Densities did not differ according to the presence or absence of organic matter, nor according to the type of organic matter added. The fact that the organic matter did not function as an attractant to nematodes was confirmed by the absence of notable (13)C assimilation by the colonising nematodes. Overall, colonisation appears to be a process that yields reproducible abundance and diversity patterns, with certain taxa showing more efficiency. Together with the high variability between the colonising nematode assemblages, this lends experimental support to the existence of a spatio-temporal mosaic that emerges from highly localised, partially stochastic community dynamics.  相似文献   

18.
Arctic slimy sculpin were sampled by passive trapping in lakes containing the predators lake trout and burbot (LT lakes), and lakes lacking sculpin predators (NoLT lakes). Sculpin food abundance (chironomid biomass) from the rocky littoral zone was compared with that from the deep water sediment zone. Distribution, size, growth, age, condition and relative abundance of sculpin were examined. Spatial distribution of sculpin was different between lake types, with more and larger sculpin found over the sediment zone in NoLT lakes. There were no seasonal patterns evident in this distribution and catch per unit effort was not significantly different between LT and NoLT lakes. Biomass of chironomids, the major food of the sculpin, was higher in the sediments than on the rocks, suggesting that sediments should be the preferred environment in the absence of piscivores. Longevity of sculpins varied between IV and VIII years and was not correlated with lake type. Sculpin size frequency distributions were shifted toward slightly larger fish in NoLT lakes. Sculpin growth curves and condition estimates did not reveal a difference between lake types, but comparison of mean ototlith interannular distances between lake types showed a trend, significant in year 4, toward more growth in no lake trout lakes. These results suggest that the presence of piscivores is an important factor limiting arctic slimy sculpin distribution and may act in concert with food supply to impact sculpin growth.  相似文献   

19.
Capture of living deep-sea animals is reviewed. The conditions for the successful recovery of living animals from the deep-sea are elaborated with examples. Control of pressure, temperature, or both, appears to be a prerequisite for the capture of living deep-sea animals. Deep-sea animals (archibenthal) show a loss of the R1 response in comparison with their shallow-water counterparts. Genuine deep-sea animals have now been recovered in a living state suitable for experimentation from the High Arctic.  相似文献   

20.
Little is known about the life histories of the deep-sea metazoan meiobenthos. At a bathyal site (depth 1430 m) in Sagami Bay, central Japan, temporal changes in abundance and reproductive activity of deep-sea benthic copepods were investigated for eight abundant species that composed about 50% of total individuals, based on samples collected before fresh organic matter increased in the sediment (December 1996 and 1997), 1 month thereafter (June 1997 and May 1998), and a few months after the event (August 1997 and 1998). Densities of adults of these species fluctuated among samples (the total abundance was 5–30 individuals/10 cm2), but did not show any seasonal trend. Strong evidence for competitive relationships among species could not be detected, and there was no significant negative correlation in abundance between any species pair. The percentage of ovigerous females among total adult females of Schizopera sp. 1 differed significantly by month. Furthermore, the adult sex ratio of the species appeared to fluctuate temporally. These suggest a temporal change in reproductive activity and synchronized growth of Schizopera sp. 1. There was no temporal trend, however, in any parameter for the other species. Mean egg number per brood and egg diameter differed among species, but did not change seasonally in any species. Our study suggests the rarity of seasonal breeding species among the deep-sea benthic copepods, one of the major metazoan meiofaunal groups, as well as among other macro-megafaunal metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号