首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purpose of this research was to explore the utility of β cyclodextrin (βCD) and β cyclodextrin derivatives (hydroxypropyl-β-cyclodextrin [HPβCD], sulfobutylether-β-CD [SB\CD], and a randomly methylated-β-CD [RMβCD]) to form inclusion complexes with the antitumoral drug, β-lapachone (βLAP), in order to overcome the problem of its poor water solubility. RMβCD presented the highest efficiency for βLAP solubilization and was selected to develop solid-state binary systems. Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier transform infrared (FTIR) and optical and scanning electron microscopy results suggest the formation of inclusion complexes by both freeze-drying and kneading techniques with a dramatic improvement in drug dissolution efficiency at 20-minute dissolution efficiency (DE20-minute 67.15% and 88.22%, respectively) against the drug (DE20-minute 27.11%) or the βCD/drug physical mixture (DE20-minute 27.22%). However, the kneading method gives a highly crystalline material that together with the adequate drug dissolution profile make it the best procedure in obtaining inclusion complexes of RMβCD/βLAP convenient for different applications of βLAP. Published: July 27, 2007  相似文献   

2.
MP2(full)/aug-cc-pVDZ(-PP) computations predict that new triangular bonding complexes (where X? is a halide and H–C refers to a protic solvent molecule) consist of one halogen bond and two hydrogen bonds in the gas phase. Carbon tetrabromide acts as the donor in the halogen bond, while it acts as an acceptor in the hydrogen bond. The halide (which commonly acts as an acceptor) can interact with both carbon tetrabromide and solvent molecule (CH3CN, CH2Cl2, CHCl3) to form a halogen bond and a hydrogen bond, respectively. The strength of the halogen bond obeys the order CBr4???Cl? > CBr4???Br? > CBr4???I?. For the hydrogen bonds formed between various halides and the same solvent molecule, the strength of the hydrogen bond obeys the order C-H???Cl? > C-H???Br? > C-H???I?. For the hydrogen bonds formed between the same halide and various solvent molecules, the interaction strength is proportional to the acidity of the hydrogen in the solvent molecule. The diminutive effect is present between the hydrogen bonds and the halogen bond in chlorine and bromine triangular bonding complexes. Complexes containing iodide ion show weak cooperative effects.
Figure
The triangular bonding complexes consisting of halogen bond and hydrogen bonds were predict in the gas phase by computational quantum chemistry.  相似文献   

3.
Maiti A  Roy S 《Nucleic acids research》2005,33(18):5896-5903
The specificity of protein–nucleic acid recognition is believed to originate largely from hydrogen bonding between protein polar atoms, primarily side-chain and polar atoms of nucleic acid bases. One way to design new nucleic acid binding proteins of novel specificity is by structure-guided alterations of the hydrogen bonding patterns of a nucleic acid–protein complex. We have used cI repressor of bacteriophage λ as a model system. In the λ-repressor–DNA complex, the -NH2 group (hydrogen bond donor) of lysine-4 of λ-repressor forms hydrogen bonds with the amide carbonyl atom of asparagine-55 (acceptor) and the O6 (acceptor) of CG6 of operator site OL1. Substitution of lysine-4 (two donors) by iso-steric S-(2-hydroxyethyl)-cysteine (one donor and one acceptor), by site-directed mutagenesis and chemical modification, leads to switch of binding specificity of λ-repressor from C:G to T:A at position 6 of OL1. This suggests that unnatural amino acid substitutions could be a simple way of generating nucleic acid binding proteins of altered specificity.  相似文献   

4.
We present a systematic investigation of the nature and strength of the hydrogen bonding in HX···HX and CH3X…HX (X = Br, Cl and F) dimers using ab initio MP2/aug-cc-pVTZ calculations in the framework of the quantum theory of atoms in molecules (QTAIM) and electron localisation functions (ELFs) methods. The electron density of the complexes has been characterised, and the hydrogen bonding energy, as well as the QTAIM and ELF parameters, is consistent, providing deep insight into the origin of the hydrogen bonding in these complexes. It was found that in both linear and angular HX…HX and CH3X…HX dimers, F atoms form stronger HB than Br and Cl, but they need short (~2 Å) X…HX contacts.  相似文献   

5.
The nature of the lithium/hydrogen bonding between (CH2)2X(X: C=CH2, O, S) and LiY/HY(Y=F, Cl, Br) have been theoretically investigated at MP2/6-311++G (d, p) level, using Bader’s “atoms in molecules (AIM)” theory and Weinhold’s “natural bond orbital (NBO)” methodology. The molecule formation density differences (MFDD) of the titled complexes are analyzed. Two kinds of geometries of the lithium/hydrogen bonded complexes are compared. As a whole, the nature of lithium bond and hydrogen bond are different. For the same electron donor and the same acceptor, lithium bond is stronger than hydrogen bond. For the same electron acceptor and different kind of donors, the interaction energies follows the n-type> π-type > pseudo-π-type order. For the same (CH2)2X, the interaction energy increases in the sequence of Y=F, Cl and Br for lithium bond systems while it decreases for hydrogen bond systems. Electron transfer plays an important role in the formation of lithium bond systems while it is less important in the hydrogen bond systems.  相似文献   

6.
Pulp from agricultural residues (wheat straw) was bleached with the DEPD (chlorine dioxide-extraction with soda and hydrogen peroxide-chlorine dioxide) or P sequence (hydrogen peroxide) after enzymatic pretreatment with cartazyme HS.The enzymatic pretreatment increases the final brightness of the pulp after bleaching with the P and DEPD sequences (+3.7%) and saves bleaching reagents (from 3.5 to 5.2%); however, it also decreases the pulp yield (from 9.3 to 14.1%) and breaking length (from 20.2 to 13.2%), burst index (from 13.1 to 8.2%) and tear index (from 4.2% to 16.8%) of the paper sheets formed from the pulp.The authors wish to express their gratitude to DGICyT, Spanish Ministry of Education and Science, for financial support granted for the realization of this work as part of Project PB 91-0841.  相似文献   

7.
Abstract

Cooperative effects are known to strongly affect the geometrical, energetic and vibrational properties of hydrogen bonded systems. In particular, such effects strongly favor molecular arrangements where each molecule is simultaneously a donor and an acceptor of hydrogen bonds (HBs), regardless of the chemical nature of the monomer subunits. In the particular case of water systems, it has been shown that the more a molecule is a proton donor in HBs, the more the HBs where it is a proton acceptor are reinforced. Such a property could be at the origin of the equilibrium between the two species of hydrogen bonded water molecules in liquid water (one with a strong hydrogen bonding character, and one with a weaker one), as experimentally evidenced and as a molecular dynamic study of the small (H2O)24 cluster clearly suggests.  相似文献   

8.
This study investigated the effect of forage type (grass or red clover) and harvesting time (primary growth or regrowth) of silage on energy and N utilisation by sheep fed at maintenance level. Specifically, the assumption of constant loss of energy of digestible organic matter from energy losses in urine and CH4 applied in evaluation of silage metabolisable energy (ME) was investigated. Urinary excretion of high-energy phenolic compounds related to solubilisation of lignin was assumed to affect urinary energy (UE) losses from sheep fed highly digestible grass silage (GS). A total of 25 primary growth and regrowth silages of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass mixtures and red clover (Trifolium pratense) samples collected in digestibility trials with sheep, including faecal and urine samples, were used for energy and N determinations. Urinary concentration of monophenolic compounds and CH4 emissions in vitro were also analysed. Daily faecal N output, CH4 yield (MJ/kg DM intake), proportion of CH4 energy in digestible energy (DE) and proportion of UE in DE were greater (P ≤ 0.03) in sheep fed red clover silage (RCS) than GS. Furthermore, less (P = 0.01) energy was lost as UE of DE in sheep fed primary growth GS compared with the other treatments. The relationship between UE and silage N intake or urinary N output for both silage types (i.e. grass v. red clover) was strong, but the fit of the regressions was better for GS than RCS. The CH4/DE ratio decreased (P < 0.05) and the UE/DE ratio increased (P < 0.05) with increasing organic matter digestibility in RCS. These relationships were not significant (P < 0.05) for the GS diets. The regression coefficient was higher (P < 0.05) for GS than RCS when regressing ME concentration on digestible organic matter. The results of this study imply that ME/DE ratio is not constant across first-cut GS of different maturities. The ME production response may be smaller from highly digestible first-cut GS but could not be clearly related to urinary excretion of monophenols derived from solubilisation of lignin. Furthermore, energy lost in urine was not clearly defined for RCS and was much more predictable for GS from silage N concentration.  相似文献   

9.
We prepared myofiber basal lamina sheaths (BLs) using the in vivo experimental procedure of Sanes et al. (J. Cell Biol.78, 176–198, 1978) on frog cutaneus pectoris muscle. On the 15 days post-operatively, acetylcholinesterase (AChE) is still found concentrated in native BLs and purified BLs preparations and both globular and asymmetric molecular forms coexist (Nicolet et al., J. Cell Biol., 107, 762–768, 1986). We describe here at least two distinct AChE pools, according to their differential solubility in non-ionic detergent and high-salt media. One is detergent-extracted (DE) and the other is detergent-insoluble, high-salt extracted (HSS). In the BLs preparation as well as in control motor end-plate rich regions (MEP-r) of muscle, both globular and asymmetric forms of AChE are found as DE and HSS variants. These observations suggest that all AChE forms are present in the extracellular muscle basal lamina and are bound through not only hydrophilic but also hydrophobic bonds, to probably distinct structural domains of the muscle basal lamina.  相似文献   

10.
Solution‐processed small molecule (SM) solar cells have the prospect to outperform their polymer‐fullerene counterparts. Considering that both SM donors/acceptors absorb in visible spectral range, higher expected photocurrents should in principle translate into higher power conversion efficiencies (PCEs). However, limited bulk‐heterojunction (BHJ) charge carrier mobility (<10‐4 cm2 V‐1 s‐1) and carrier lifetimes (<1 µs) often impose active layer thickness constraints on BHJ devices (≈100 nm), limiting external quantum efficiencies (EQEs) and photocurrent, and making large‐scale processing techniques particularly challenging. In this report, it is shown that ternary BHJs composed of the SM donor DR3TBDTT (DR3), the SM acceptor ICC6 and the fullerene acceptor PC71BM can be used to achieve SM‐based ternary BHJ solar cells with active layer thicknesses >200 nm and PCEs nearing 11%. The examinations show that these remarkable figures are the result of i) significantly improved electron mobility (8.2 × 10‐4 cm2 V‐1 s‐1), ii) longer carrier lifetimes (2.4 µs), and iii) reduced geminate recombination within BHJ active layers to which PC71BM has been added as ternary component. Optically thick (up to ≈500 nm) devices are shown to maintain PCEs >8%, and optimized DR3:ICC6:PC71BM solar cells demonstrate long‐term shelf stability (dark) for >1000 h, in 55% humidity air environment.  相似文献   

11.
This work aimed to develop a fast-dissolving film made of low dextrose equivalent maltodextrins (MDX) containing nicotine hydrogen tartrate salt (NHT). Particular attention was given to the selection of the suitable taste-masking agent (TMA) and the characterisation of the ductility and flexibility under different mechanical stresses. MDX with two different dextrose equivalents (DEs), namely DE 6 and DE 12, were selected in order to evaluate the effect of polymer molecular weight on film tensile properties. The bitterness and astringency intensity of NHT and the suppression effect of several TMA were evaluated by a Taste-Sensing System. The films were characterised in term of NHT content, tensile properties, disintegration time and drug dissolution test. As expected, placebo films made of MDX DE 6 appeared stiffer and less ductile than film prepared using MDX DE 12. The films disintegrated within 10 s. Among the tested TMA, the milk and mint flavours resulted particularly suitable to mask the taste of NHT. The addition of NHT and taste-masking agents affected film tensile properties; however, the effect of the addition of these components can be counterweighted by modulating the glycerine content and/or the MDX molecular weight. The feasibility of NHT loaded fast-dissolving films was demonstrated.  相似文献   

12.
Equilibrium constants for substitution of Cl? by cytidine in PdCl42? and Pd(en)Cl2 in aqueous solution were determined. Equilibrium constants for substitution of Cl? by pyridine in Pd(en)Cl2 were also measured. For unit ionic strength at 25°C, log K values for the successive substitutions of two chlorides are: PdCl42? -cytidine, log K1 = 4.49, log K2 = 3.45; Pd(en)Cl2-cytidine, log K1 = 3.32, log K2 = 2.56; Pd(en)Cl2-pyridine, log K1 = 4.31, log K2 = 3.15. Comparison of equilibrium constants indicates that intramolecular hydrogen bonding and steric interactions of the exocyclic substituents ortho to the binding site of cytidine do not contribute significantly to the stability of the palladium-nucleoside complexes. Coordination equilibria, of deprotonated cytidine occur in alkaline solutions of PdCl42? and the ligand.  相似文献   

13.
14.
Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α‐ and β‐amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β‐amino acids are experimentally more stable than those formed by α‐amino acids. This is paradoxical because the larger sizes of the hydrogen‐bonding rings required by the extra methylene groups should lead to entropic destabilization. In this study, molecular dynamics simulations using the second‐generation force field, AMOEBA (Ponder, J.W., et al., Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010. 114 (8): p. 2549–64.) explored the stability and hydrogen‐bonding patterns of capped oligo‐β‐alanine, oligoalanine, and oligoglycine dodecamers in water. The MD simulations showed that oligo‐β‐alanine has strong acceptor+2 hydrogen bonds, but surprisingly did not contain a large content of 312‐helical structures, possibly due to the sparse distribution of the 312‐helical structure and other structures with acceptor+2 hydrogen bonds. On the other hand, despite its backbone flexibility, the β‐alanine dodecamer had more stable and persistent <3.0 Å hydrogen bonds. Its structure was dominated more by multicentered hydrogen bonds than either oligoglycine or oligoalanine helices. The 31 (PII) helical structure, prevalent in oligoglycine and oligoalanine, does not appear to be stable in oligo‐β‐alanine indicating its competition with other structures (stacking structure as indicated by MD analyses). These differences are among the factors that shape helical structural preferences and the relative stabilities of these three oligopeptides. Proteins 2014; 82:3043–3061. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
An accurate value for metabolizable energy (ME) requirement for maintenance (MEm) is essential to enable sheep husbandry practice to reach its potential. The objectives of the study were to use calorimetry chamber data of dry ewes (Hu × thin-tail Han F1 crossbred) to develop updated MEm, examine effects of substituting concentrate feed with lucerne hay on energy partitioning, and explore the relationships between energy utilization and fasting heat production (FHP). Data were collected from three experiments. In Exps. 1, 2a and 2b, lucerne hay was used to replace concentrates in three levels (0:40%, 15:25% and 30:10%), with diets containing 60% maize stover (Exp. 1), fresh rye forage (Exp. 2a) or dry rye forage (Exp. 2b). Within each experiment, diets were isoenergetic (digestible energy, DE) and isonitrogenous. Exp. 3 aimed at evaluating effects of three BW levels on nutrient utilization of dry ewes offered diets containing 60% maize stover, 15% lucerne hay and 25% concentrates. Energy metabolism data were measured using the respiration calorimeter chamber technique in all three experiments, followed by the measurement of FHP in Exps. 1, 2b and 3. The MEm derived from the linear regression between energy balance (EB) and ME intake was 0.440 MJ/kg BW0.75. The average FHP was 0.326 MJ/kg BW0.75. The fasting metabolism, net energy requirement for maintenance (NEm) and MEm were estimated to be 0.336, 0.359 and 0.511 MJ/kg BW0.75, respectively, through adjustment of FHP using fasting urinary energy output, activity allowance and efficiency of ME use for maintenance. The FHP was negatively correlated to EB/metabolic BW, ME/gross energy (GE), ME/DE, EB/GE intake and EB/ME intake, while positively correlated to HP/GE intake, HP/ME intake and CH4-E/GE intake. Compared to zero lucerne hay diet, the 15% lucerne hay intake decreased HP (MJ/d), and had no negative effects on EB (MJ/d) or energy utilization efficiencies. The results indicate that nutrient requirement standards currently used across the world are likely to underestimate MEm for dry ewes, and the selection of low FHP ewes for breeding has the potential to improve sheep production efficiency.  相似文献   

16.
The goal of this study was to assess the utility of near infrared (NIR) spectroscopy for the determination of content uniformity, tablet crushing strength (tablet hardness), and dissolution rate in sulfamethazine veterinary bolus dosage forms. A formulation containing sulfamethazine, corn starch, and magnesium stearate was employed. The formulations were wet granulated with a 10% (wt/vol) starch paste in a high shear granulator and dried at 60°C in a convection tray dryer. The tablets were compressed on a Stokes B2 rotary tablet press running at 30 rpm. Each sample was scanned in reflectance mode in the wavelengths of the NIR region. Principal component analysis (PCA) of the NIR tablet spectra and the neat raw materials indicated that the scores of the first 2 principal components were highly correlated with the chemical and physical attributes. Based on the PCA model, the significant wavelengths for sulfamethazine are 1514, (1660–1694), 2000, 2050, 2150, 2175, 2225, and 2275 nm; for corn starch are 1974, 2100, and 2325 nm; and for magnesium stearate are 2325 and 2375 nm. In addition, the loadings show large negative peaks around the water band regions (≈1420 and 1940 nm), indicating that the partial least squares (PLS) models could be affected by product water content. A simple linear regression model was able to predict content uniformity with a correlation coefficient of 0.986 at 1656 nm; the use of a PLS regression model, with 3 factors, had anr 2 of 0.9496 and a sandard error of calibration of 0.0316. The PLS validation set had anr 2 of 0.9662 and a standard error of 0.0354. PLS calibration models, based on tablet absorbance data, could successfully predict tablet crushing strength and dissolution in spite of varying active pharmaceutical ingredient (API) levels. Prediction plots based on these PLS models yielded correlation coefficients of 0.84 and 0.92 on independent validation sets for crushing strength and Q120 (percentage dissolved in 120 minutes), respectively. Published: September 20, 2005 The opinions expressed in this paper are of the authors' personal views. They do not necessarily reflect the views or policies of the FDA.  相似文献   

17.
Xanthates, like thiolates, form a variety of complexes with metals in which coordinating sulfur can serve as a hydrogen bond acceptor. Nickel tris xanthate complexes [Ni(xan)3], (xan = o-ethylxanthate, N-(carbamoylmethyl)ethylxanthate) have been synthesized and compared by a combination of X-ray crystallographic and spectroscopic measurements. Recent results from our studies of N-H?S hydrogen bonding interactions in metal-xanthate complexes shows N-S distances to be longer than those in related thiolate complexes, indicative of weaker hydrogen bonds for the xanthates. The complex (Et4N)[N-(carbamoylmethyl)ethylxanthate)] adopts an extended conformation in both the solid state and solution and lacks either intraligand or intermolecular N-H?S hydrogen bonds. The complex (CTA)[Ni(exa)3] exhibits N-H?S hydrogen bonds between the amide group of the counterion and the ligand sulfur. The amide-sulfur N-H?S distance is 3.567 Å.  相似文献   

18.
19.
The objective of the present investigation was to improve the dissolution rate of Rofecoxib (RXB), a poorly water-soluble drug by solid dispersion technique using a water-soluble carrier, Poloxamer 188 (PXM). The melting method was used to prepare solid dispersions. A 32 full factorial design approach was used for optimization wherein the temperature to which the melt-drug mixture cooled (X 1) and the drug-to-polymer ratio (X 2) were selected as independent variables and the time required for 90% drug dissolution (t90) was selected as the dependent variable. Multiple linear regression analysis revealed that for obtaining higher dissolution of RXB from PXM solid dispersions, a low level ofX 1 and a high level ofX 2 were suitable. The differential scanning calorimetry and x-ray diffraction studies demonstrated that enhanced dissolution of RXB from solid dispersion might be due to a decrease in the crystallinity of RXB and PXM and dissolution of RXB in molten PXM during solid dispersion preparation. In conclusion, dissolution enhancement of RXB was obtained by preparing its solid dispersions in PXM using melting technique. The use of a factorial design approach helped in identifying the critical factors in the preparation and formulation of solid dispersion. Published: April 13, 2007  相似文献   

20.
The purpose of this study was to enhance the dissolution of total flavones of Hippophae rhamnoides L. (TFH) by solid dispersions consisting of the drug and a polymeric carrier, poloxamer 188 (PXM). The solvent evaporation method was used to prepare solid dispersions. A 32 full-factorial design approach was used for optimization wherein the amount of solvent (X 1) and the drug-to-polymer ratio (X 2) were selected as independent variables and the percentage of TFH dissolved in 10 min (Q 10) was selected as the dependent variable. Multiple linear regression analysis revealed that a suitable level of X 1 and X 2 was required for obtaining higher dissolution of TFH from PXM solid dispersions. Solid dispersions were characterized by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and dissolution tests. Characterization studies revealed that solid dispersion of TFH–PXM showed enhancement of TFH dissolution due to the conversion of TFH into a less crystalline and/or amorphous form. In conclusion, dissolution enhancement of TFH was obtained by preparing its solid dispersions in PXM using solvent method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号