首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Clostridium perfringens strains NCTC 8238, NCTC 8798, NCTC 8679, 8-6, FD-1, and PS52 formed high levels of heat-resistant spores in a defined medium (D) with various sugars as energy sources. Strain PS49 formed high levels of heat-resistant spores when grown with dextrin and methylxanthines. The experiments showed the possibility of carrying out experiments on the sporulation of certain C. perfringens strains in a completely defined medium, without using the ill-defined polysaccharide dextrin. The addition of guanosine and sucrose to D medium generally suppressed sporulation in most strains and made it possible to prepare overnight cultures consisting mainly of vegetative cells. These cultures could be used to inoculate D medium directly, eliminating both the need to wash cells and the lag which normally occurs when cells have been grown in a different medium. Except for strains PS52 and NCTC 8238, guanosine generally increased growth rates and reduced sporulation for all strains when grown on simple sugars. Methylxanthines decreased growth rates and increased sporulation of NCTC 8679 and PS49 when present in D medium with dextrin. In the absence of guanosine, strains NCTC 8798 and 8-6 grew much slower on glucose than on disaccharides. Strain PS52 grew on lactose only after a prolonged lag. For strains requiring dextrin for good sporulation, a commercial dextrin (Difco Laboratories) was found to be readily filter sterilized, making it possible to prepare large amounts of media for use in the production of spores (or enterotoxin).  相似文献   

2.
A new, defined medium for the sporulation of Clostridium perfringens is presented. Sporulation levels exceeding 10(6) to 10(7) heat-resistant spores per ml were obtained for seven strains: PS49, PS52, FD-1, T-65, NCTC strains 8798, 8238, and 10240. In the presence of theophylline, a methylxanthine, higher levels of heat-resistant spores were attained for strains PS49, PS52, FD-1, ant T-65; photomicrographs demonstrated a higher fraction of sporulating cells when these strains were grown in the presence of methylxanthines. Use of washed, highly diluted (less than 100 cells) inocula resulted in no reduction in spore yield. Strain KA3 grew well but sporulated poorly on this medium. The medium was clear and free of precipitate when small amounts (100 microgram/ml) of methylxanthine were incorporated.  相似文献   

3.
Clear, defined medium for the sporulation of Clostridium perfringens.   总被引:10,自引:6,他引:4       下载免费PDF全文
A new, defined medium for the sporulation of Clostridium perfringens is presented. Sporulation levels exceeding 10(6) to 10(7) heat-resistant spores per ml were obtained for seven strains: PS49, PS52, FD-1, T-65, NCTC strains 8798, 8238, and 10240. In the presence of theophylline, a methylxanthine, higher levels of heat-resistant spores were attained for strains PS49, PS52, FD-1, ant T-65; photomicrographs demonstrated a higher fraction of sporulating cells when these strains were grown in the presence of methylxanthines. Use of washed, highly diluted (less than 100 cells) inocula resulted in no reduction in spore yield. Strain KA3 grew well but sporulated poorly on this medium. The medium was clear and free of precipitate when small amounts (100 microgram/ml) of methylxanthine were incorporated.  相似文献   

4.
The methylxanthines caffeine, theophylline, and isobutylmethylxanthine greatly increased spore yields of Clostridium perfringens strains FD-1, PS52, and PS49 when grown on Duncan-Strong medium or on a new casein-digest medium. Four other strains (KA3, and National Collection of Type Cultures strains 8798, 8238, and 10240) failed to show any significant increase when tested under similar conditions. The degree of sporulation increase was influenced by the carbohydrate energy source in some strains but not in others. Strain PS52 showed a large increase in spore yield when dextrin was the energy source but only a slight increase when raffinose served as the energy source. Strain FD-1 showed similar increases in spore yield with either dextrin or raffinose.  相似文献   

5.
The methylxanthines caffeine, theophylline, and isobutylmethylxanthine greatly increased spore yields of Clostridium perfringens strains FD-1, PS52, and PS49 when grown on Duncan-Strong medium or on a new casein-digest medium. Four other strains (KA3, and National Collection of Type Cultures strains 8798, 8238, and 10240) failed to show any significant increase when tested under similar conditions. The degree of sporulation increase was influenced by the carbohydrate energy source in some strains but not in others. Strain PS52 showed a large increase in spore yield when dextrin was the energy source but only a slight increase when raffinose served as the energy source. Strain FD-1 showed similar increases in spore yield with either dextrin or raffinose.  相似文献   

6.
A product in the culture supernatant fluid of Clostridium perfringens NCTC 8239 stimulated the sporulation of a test strain, NCTC 8679, of the same organism. The responsible factor, termed sporulation factor (SF), was present in seven cultures of Cl. perfringens grown in either a defined or complex medium. The SF reversed glucose-mediated catabolite repression of sporulation by this organism. Preliminary characterization of the SF demonstrated a resistance to elevated temperatures and proteases and a molecular weight of less than 500 Da. The known association of Cl. perfringens enterotoxin with sporulation highlights the importance of interactions between strains of this organism as may occur in the human intestine during foodborne illness.  相似文献   

7.
The sporulation of Clostridium perfringens NCTC 8798 was studied after exposing vegetative cells to: pH values of 1.5 to 8.0 in fluid thioglycolate broth (for 2h) and then transferring them to Duncan-Strong (DS) sporulation medium; sodium cholate or sodium deoxycholate (0.3 to 6.5 mM) in DS medium; or Rhia-Solberg medium with 0.4% (wt/wt) starch, glucose, or both added at 0 to 55 mM. At pH 1.5, no culturable heat-resistant spores were formed. For cells exposed to pH 3.0, 4.0, 5.0, or 6.0, increases in heat-resistant spores were not seen until after a lag of 12 to 13 h, whereas the lag was only 2 to 3 h for cells exposed to pH 7.0 or 8.0. Maximal spore crops were produced after only 6 to 8 h for cells exposed to pH 7 or 8, but 16 to 18 h was required for production of maximal spore crops by cells exposed to the lower-pH media. The addition of sodium cholate (3.5 to 6.5 mM) to DS medium only slightly reduced the culturable heat-resistant spore count from 1.9 X 10(7) to 3 X 10(6)/ml. The addition of 1.8 mM or more sodium deoxycholate reduced the culturable heat-resistant spore count to less than 10/ ml. When either starch or glucose alone was added to Rhia-Solberg medium there was no production of culturable heat-resistant spores, but a combination of 0.4% (wt/wt) starch and 4.4 mM glucose yielded 6 X 10(5) spores/ml. The spore production remained at this level for glucose concentrations of 6 to 22 mM, but then declined to about 3 X 10(3) spores per ml at higher concentrations.  相似文献   

8.
The sporulation of Clostridium perfringens NCTC 8798 was studied after exposing vegetative cells to: pH values of 1.5 to 8.0 in fluid thioglycolate broth (for 2h) and then transferring them to Duncan-Strong (DS) sporulation medium; sodium cholate or sodium deoxycholate (0.3 to 6.5 mM) in DS medium; or Rhia-Solberg medium with 0.4% (wt/wt) starch, glucose, or both added at 0 to 55 mM. At pH 1.5, no culturable heat-resistant spores were formed. For cells exposed to pH 3.0, 4.0, 5.0, or 6.0, increases in heat-resistant spores were not seen until after a lag of 12 to 13 h, whereas the lag was only 2 to 3 h for cells exposed to pH 7.0 or 8.0. Maximal spore crops were produced after only 6 to 8 h for cells exposed to pH 7 or 8, but 16 to 18 h was required for production of maximal spore crops by cells exposed to the lower-pH media. The addition of sodium cholate (3.5 to 6.5 mM) to DS medium only slightly reduced the culturable heat-resistant spore count from 1.9 X 10(7) to 3 X 10(6)/ml. The addition of 1.8 mM or more sodium deoxycholate reduced the culturable heat-resistant spore count to less than 10/ ml. When either starch or glucose alone was added to Rhia-Solberg medium there was no production of culturable heat-resistant spores, but a combination of 0.4% (wt/wt) starch and 4.4 mM glucose yielded 6 X 10(5) spores/ml. The spore production remained at this level for glucose concentrations of 6 to 22 mM, but then declined to about 3 X 10(3) spores per ml at higher concentrations.  相似文献   

9.
Growth and in vitro sporulation capabilities of three related Clostridium perfringens strains (NCTC 8798, 8-6 and R3) were followed in a new sporulation medium (NSM), with notable changes from a maintenance medium originally designed for strictly anaerobic bacteria. Compared with thioglycollate (FTG) medium, the new sporulation medium promoted growth of Cl. perfringens with a shorter lag phase and a 20% higher biomass production. The age of inoculum did not change Cl. perfringens growth kinetics. When compared with reference conditions, in vitro spore production kinetics were different in the new sporulation medium, but both conditions led routinely to 100% sporulation and spore counts of approximately 10(8) ml-1. The ease of preparation of the NSM, and the use of the same culture medium for good growth, high sporulation yields and spore production, represent an attractive alternative to the complex media routinely used for in vitro studies of Cl. perfringens physiology.  相似文献   

10.
The culture supernatant fluids (CSFs) of 12 strains of Clostridium perfringens types A, B, C, and D stimulated sporulation of test strains NCTC 8238 and NCTC 8449 of this organism. The sporulation-promoting ability was present in vegetative and sporulating CSFs of both enterotoxin-positive (Ent+) and Ent- strains. The sporulation factor possessed a molecular weight between 1,000 and 5,000 and was heat and acid stable. This study suggests a potential role for Ent- strains in food-borne disease outbreaks caused by Ent+ strains of C. perfringens type A.  相似文献   

11.
The percentage sporulation and enterotoxin specific activity were improved for all of five Clostridium perfringens strains, and numbers of heat-resistant spores were improved for four of five strains by replacing proteose peptone with peptone in Duncan-Strong (DS) medium. When raffinose replaced starch in DS, peptone was superior to proteose peptone in increasing percentage sporulation, numbers of heat-resistant spores, and enterotoxin formation for four of five strains. Enterotoxin levels for a strain varied when different lots of the same peptone were used. Additional experiments were conducted with three C. perfringens strains grown in DS medium with peptone. Enterotoxin specific activity was increased for three strains by adding papaverine (hydrochloride crystalline), for two strains by adding each of caffeine and 3-isobutyl-l-methylxanthine, for one strain by adding each of theophylline, 6-mercaptopurine, and 2-amino-6-mercaptopurine, and for none of the strains by adding imidazole. When enterotoxin formation was improved for a strain by one of the compounds, percentage sporulation increased, but growth decreased. Effective compounds also increased numbers of heat-resistant spores for strains H6 and R42, but slightly or not at all for strain E13. The action of these compounds was concentration dependent, with the optimal concentration differing between compounds and between strains grown in the presence of the same compound.  相似文献   

12.
The effect of glucose and other sugars on sporulation and extracellular amylase production byClostridium perfringens NCTC 8679 type A in a defined medium was studied. Cells grown in the presence of glucose and mannose yielded the highest levels of amylase activity, while disaccharides such as lactose, maltose, and sucrose resulted in moderate amylase production. Little amylase activity was detected in the medium in the presence of ribose or galactose. The concentration of each sugar resulting in highest amylase production was between 6 and 10mm except for fructose (25mm). Levels of heat-resistant spores decreased as sugar concentrations increased. The addition of even small amounts of glucose to the medium before exponential growth suppressed sporulation but maximized amylase activity. The addition of glucose after the initiation of sporulation did not inhibit spore formation. However, its addition to 3-h amylase-producing cells did inhibit subsequent sporulation but promoted the continued excretion of amylase. The different response to glucose between sporulating cells and amylase-producing cells suggests that the mechanisms of catabolite repression of extracellular amylase production and sporulation are distinct in this strain ofC. perfringens.  相似文献   

13.
The effect of human bile juice and bile salts (sodium cholate, sodium taurocholate, sodium glycochenodeoxycholate and sodium chenodeoxycholate) on growth, sporulation and enterotoxin production by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens was determined. Each bile salt inhibited growth to a different degree. A mixture of bile salts completely inhibited the growth of enterotoxin-positive strains of this organism. Human bile juice completely inhibited the growth of all the strains at a dilution of 1:320. A distinct stimulatory effect of the bile salts on sporulation was observed in the case of C. perfringens strains NCTC 8239 and NCTC 8679. The salts also increased enterotoxin concentrations in the cell extracts of the enterotoxin-positive strains tested. No effect on enterotoxin production was detected when an enterotoxin-negative strain was examined.  相似文献   

14.
Enterotoxin was produced by 9 of 10 strains of Clostridium perfringens type A when grown in a defined medium. Additional dextrin increased the amount of enterotoxin in extracts of sporulating cells of strain NCTC 10239.  相似文献   

15.
Enterotoxin was produced by 9 of 10 strains of Clostridium perfringens type A when grown in a defined medium. Additional dextrin increased the amount of enterotoxin in extracts of sporulating cells of strain NCTC 10239.  相似文献   

16.
Enterotoxin-positive strains of Clostridium perfringens were grown in Duncan-Strong sporulation medium in the presence of 0.4% (7.9 mM) raffinose at 37 and 43 degrees C. Enterotoxin- and heat-resistant spores were produced at similar concentrations but sooner at 43 degrees C than at 37 degrees C. There was a direct relationship between spore heat resistance and sporulation temperature (32, 37, and 43 degrees C).  相似文献   

17.
Enterotoxin-positive strains of Clostridium perfringens were grown in Duncan-Strong sporulation medium in the presence of 0.4% (7.9 mM) raffinose at 37 and 43 degrees C. Enterotoxin- and heat-resistant spores were produced at similar concentrations but sooner at 43 degrees C than at 37 degrees C. There was a direct relationship between spore heat resistance and sporulation temperature (32, 37, and 43 degrees C).  相似文献   

18.
Clostridium perfringens strain NCTC 8798 spores were injured by ultrahigh temperature treatment and were unable to outgrow in the presence of antibiotics used in selective enumeration media. Injured spores underwent repair in a nonselective laboratory medium and in foods.  相似文献   

19.
Chemostat-cultured Clostridium perfringens ATCC 3624 and NCTC 10240, and a nonsporulating mutant strain, 8-5, produced enterotoxin in the absence of sporulation when cultured in a chemically defined medium at a 0.084-h-1 dilution rate at 37 degrees C. The enterotoxin was detected by serological and biological assays. Examination of the chemostat cultures by electron microscopy did not reveal sporulation at any stage. The culture maintained enterotoxigenicity throughout cultivation in a continuous system. The enterotoxin was detected in batch cultures of each strain cultivated in fluid thioglycolate medium and a chemically defined medium. No heat-resistant or light-refractile spores were detected in batch cultures during the exponential growth.  相似文献   

20.
Chemostat-cultured Clostridium perfringens ATCC 3624 and NCTC 10240, and a nonsporulating mutant strain, 8-5, produced enterotoxin in the absence of sporulation when cultured in a chemically defined medium at a 0.084-h-1 dilution rate at 37 degrees C. The enterotoxin was detected by serological and biological assays. Examination of the chemostat cultures by electron microscopy did not reveal sporulation at any stage. The culture maintained enterotoxigenicity throughout cultivation in a continuous system. The enterotoxin was detected in batch cultures of each strain cultivated in fluid thioglycolate medium and a chemically defined medium. No heat-resistant or light-refractile spores were detected in batch cultures during the exponential growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号