首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine L1210 leukemia cells resistant to the antineoplastic agent L-phenylalanine mustard have a 1.5-2.0-fold elevation in their cellular GSH and GSSG content as compared to drug-sensitive cells. Cellular uptake of L-[U-14C]cystine and its incorporation into GSH of the resistant tumor are correspondingly elevated. Synthesis of gamma-glutamylcysteine, GSH, and GSSG is elevated 1.5-2.0-fold in cell-free preparations of the resistant tumor. This increased synthesis of GSH is attributed to increased cellular content (1.6-fold) of gamma-glutamylcysteine synthetase. GSH synthetase activity is equivalent in both drug-sensitive and -resistant cells. Investigation into the hydrolysis of selected peptides by cell-free preparations of both sensitive and resistant tumors suggest that aminopeptidase M participates in the formation of L-cysteine from L-Cys-Gly. This is supported by the observation that these preparations readily degrade L-Leu-p-nitroanilide and L-Ala-L-Ala-L-Ala, known substrates for aminopeptidase M, but not dipeptidase. The failure of the tumors to degrade Gly-D-Ala, a dipeptidase substrate, and the marked inhibition of L-Ala-Gly, L-Cys-Gly, and L-Ala-L-Ala-L-Ala hydrolysis by Bestatin further support a role for aminopeptidase M in the generation of L-cysteine from L-Cys-Gly. These results suggest that the drug-resistant tumor cell has developed an efficient mechanism for maintenance of elevated GSH which involves both gamma-glutamyl transpeptidase-initiated catabolism of GSH to cysteine and its reutilization by gamma-glutamylcysteine synthetase.  相似文献   

2.
Summary

Glutathione (GSH) is an abundant and ubiquitous low-molecular-mass thiol with proposed roles in many cellular processes including amino acid transport, synthesis of proteins and nucleic acids, modulation of enzyme activity and metabolism of xenobiotics, carcinogens and reactive oxygen species. This review describes recent findings in the lower eukaryote Saccharomyces cerevisiae that are leading to a better understanding of the role of this peptide in eukaryotic cell metabolism. In particular, two gene products involved in maintaining the levels of reduced GSH have been studied; namely, GSH1 encoding γ-glutamylcysteine synthetase, the first step in the biosynthesis of GSH, and glutathione reductase, which recycles glutathione to its reduced form. These studies indicate that GSH is an essential metabolite in yeast, and that it is required for protection against oxidative stress produced by mitochondrial metabolism and exogenous reactive oxygen species. These findings are discussed in the light of analogous observations made in higher eukaryotes.  相似文献   

3.
Cardiovascular complications of diabetes mellitus involve oxidative stress and profound changes in reduced glutathione (GSH), an essential tripeptide that controls many redox-sensitive cell functions. This study examined regulation of GSH by insulin to identify mechanisms controlling cardiac redox state and to define the functional impact of GSH depletion. GSH was measured by fluorescence microscopy in ventricular myocytes isolated from Sprague-Dawley rats made diabetic by streptozotocin, and video and confocal microscopy were used to measure mechanical properties and Ca(2+) transients, respectively. Spectrophotometric assays of tissue extracts were also done to measure the activities of enzymes that control GSH levels. Four weeks after injection of streptozotocin, mean GSH concentration ([GSH]) in isolated diabetic rat myocytes was approximately 36% less than in control, correlating with decreased activities of two major enzymes regulating GSH levels: glutathione reductase and gamma-glutamylcysteine synthetase. Treatment of diabetic rat myocytes with insulin normalized [GSH] after a delay of 3-4 h. A more rapid but transient upregulation of [GSH] occurred in myocytes treated with dichloroacetate, an activator of pyruvate dehydrogenase. Inhibitor experiments indicated that insulin normalized [GSH] via the pentose pathway and gamma-glutamylcysteine synthetase, although the basal activity of glucose-6-phosphate dehydrogenase was not different between diabetic and control hearts. Diabetic rat myocytes were characterized by significant mechanical dysfunction that correlated with diminished and prolonged Ca(2+) transients. This phenotype was reversed by in vitro treatment with insulin and also by exogenous GSH or N-acetylcysteine, a precursor of GSH. Our data suggest that insulin regulates GSH through pathways involving de novo GSH synthesis and reduction of its oxidized form. It is proposed that a key function of glucose metabolism in heart is to supply reducing equivalents required to maintain adequate GSH levels for the redox control of Ca(2+) handling proteins and contraction.  相似文献   

4.
An assay of gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in crude extracts of cultured cells and tissues is described. It represents a novel combination of known methods, and is based on the formation of glutathione (GSH) from cysteine, glutamate and glycine in the presence of rat kidney GS for the assay of gamma-GCS, or from gamma-glutamylcysteine and glycine for the assay of GS. GSH is then quantified by the Tietze recycling method. Assay mixtures contain the gamma-glutamyl transpeptidase (GGT) inhibitor acivicin in order to prevent the degradation of gamma-glutamylcysteine and of the accumulating GSH, and dithiothreitol in order to prevent the oxidation of cysteine and gamma-glutamylcysteine. gamma-GCS and GS levels determined by this method are comparable to those determined by others. The method is suitable for the rapid determination of gamma-GCS GS in GGT-containing tissues and for the studies of induction of gamma-GCS and GS in tissue cultures.  相似文献   

5.
6.
S C Lu 《FASEB journal》1999,13(10):1169-1183
  相似文献   

7.
8.
Human immunodeficiency virus (HIV) progressively depletes GSH content in humans. Although the accumulated evidence suggests a role of decreased GSH in the pathogenesis of HIV, significant controversy remains concerning the mechanism of GSH depletion, especially in regard to envisioning appropriate therapeutic strategies to help compensate for such decreased antioxidant capacity. Tat, a transactivator encoded by HIV, is sufficient to cause GSH depletion in vitro and is implicated in AIDS-associated Kaposi's sarcoma and B cell lymphoma. In this study, we report a decrease in GSH biosynthesis with Tat, using HIV-1 Tat transgenic (Tat+) mice. A significant decline in the total intracellular GSH content in liver and erythrocytes of Tat+ mice was accompanied by decreased gamma-glutamylcysteine synthetase regulatory subunit mRNA and protein content, which resulted in an increased sensitivity of gamma-glutamylcysteine synthetase to feedback inhibition by GSH. Further study revealed a significant reduction in the activity of GSH synthetase in liver of Tat+ mice, which was linearly associated with their GSH content. Therefore, Tat appears to decrease GSH in vivo, at least partially, through modulation of GSH biosynthetic enzymes.  相似文献   

9.
Normal sheep erythrocytes as well as glutathione- (GSH-) deficient and arginase-deficient sheep erythrocytes have been characterized by 1H nuclear magnetic resonance spectroscopy. The GSH deficiency is a result of defective amino acid transport (lesion 1), diminished gamma-glutamylcysteine synthetase activity (lesion 2), or both (lesions (1 + 2)). 1H-NMR spectra of normal sheep erythrocytes are similar to those for human erythrocytes, and consist of resonances from a number of small intracellular molecules, including GSH. In contrast, the resonances for GSH in the GSH-deficient erythrocytes are much weaker, and strong resonances are observed for lysine, threonine and ornithine or arginine, depending on the arginase activity, in erythrocytes with lesion 1 and lesions (1 + 2). A comparison of the intensity of GSH resonances in spectra for normal and GSH-deficient erythrocytes with GSH levels determined spectrophotometrically following reaction with the nonspecific thiol reagent 5,5'-dithiobis(2-nitrobenzoate) (DTNB) indicates that either not all of the GSH determined with Ellman's reagent is free and observable by 1H-NMR or that not all of the thiol determined by Ellman's reagent is GSH. If the latter is the case, the GSH levels determined with Ellman's reagent for erythrocytes with lesions (1 + 2) are most affected, which might account for their high susceptibility to oxidative stress.  相似文献   

10.
Sertoli cells play a major role in the regulation of spermatogenic cell energy metabolism and differentiation. This study demonstrates that Sertoli cells are essential for the maintenance of spermatogenic cell glutathione (GSH), an important intracellular reductant and detoxicant. Primary spermatocytes and round spermatids isolated from Xenopus laevis contained 1.5 +/- 0.1 mM GSH, but sperm lacked detectable GSH. During a 5-day culture period, isolated spermatocytes and spermatids lost 80% of the initial GSH (t 1/2 = 55 h). The levels of GSH were unaffected by L-buthionine-SR-sulfoximine (BSO), a selective inhibitor of GSH synthesis. Cultures of testicular lobules and spermatocysts (composed of germ cells and Sertoli cells) depleted of interstitial tissue lost only 30% of their initial GSH in 4.5 days; the GSH levels decreased during treatment with BSO. Spermatogenic cells in cultured testes maintained their GSH levels for 7 days by a BSO-sensitive mechanism. These results demonstrate that the intracellular GSH levels of spermatogenic cells are dependent upon germ cell-somatic cell interactions. Spermatogenic cells were shown to possess gamma-glutamyl transpeptidase, glutathione synthetase, 5-oxoprolinase, and gamma-glutamylcysteine synthetase activities. [35S] Cysteine incorporation and distribution as analyzed by high performance liquid chromatography (HPLC) showed that isolated spermatogenic cells are capable of GSH synthesis. The rate of GSH synthesis, however, was insufficient to compensate for GSH turnover. These results demonstrate that production of spermatogenic cell GSH is dependent upon Sertoli cells. To our knowledge, this is the first evidence that interactions between different cell types may be of significance in GSH metabolism.  相似文献   

11.
Percoll density gradients were used to separate sheep erythrocytes according to cell age. Erythrocytes with low intracellular levels of glutathione (GSH) caused by an inherited deficiency of the System C amino acid transporter exhibited large age-related decreases in GSH and K+ content. In contrast, there was no age-related loss of intracellular GSH in normal sheep erythrocytes or in sheep erythrocytes with low GSH resulting from a diminished activity of gamma-glutamylcysteine synthetase. Loss of GSH from amino acid transport-deficient erythrocytes was paralleled by the progressive appearance of Heinz bodies in the cells, indicating an increased susceptibility to oxidative damage.  相似文献   

12.
Glutathione (GSH) is present in all mammalian tissues and plays a crucial role in many cellular processes. The second and final step in the synthesis involves the formation of GSH from gamma-glutamylcysteine (γ-GC) and glycine and is catalyzed by glutathione synthetase (GS). GS deficiency is a rare autosomal recessive disorder, and is present in patients with a range of phenotypes, from mild hemolytic anemia and metabolic acidosis to severe neurologic disorders or even death in infancy. The substrate for GS, γ-GC, has been suggested as playing a protective role, by substituting for GSH as an antioxidant in GS deficient patients. To examine the role of GS and GSH metabolites in development, we generated mice deficient in GSH by targeted disruption of the GS gene (Gss). Homozygous mice died before embryonic day (E) 7.5, but heterozygous mice survived with no distinct phenotype. GS protein levels and enzyme activity, as well as GSH metabolites, were investigated in multiple tissues. Protein levels and enzyme activity of GS in heterozygous mice were diminished by 50%, while GSH levels remained intact. γ-GC could not be detected in any investigated tissue. These data demonstrate that GSH is essential for mammalian development, and GSH synthesis via GS is an indispensable pathway for survival.  相似文献   

13.
1. An improved radioassay for glutathione synthetase and gamma-glutamylcysteine synthetase was developed. 2. Xenopus laevis liver gamma-glutamylcysteine synthetase was purified 324-fold by saline-bicarbonate extraction, protamine sulphate precipitation, CM-cellulose and DEAE-cellulose column chromatography, and gel filtration. 3. Rat liver gamma-glutamylcysteine synthetase was purified 11400-fold by a procedure similar to that employed for the Xenopus laevis enzyme. 4. Rat liver gamma-glutamylcysteine synthetase activity was inhibited by GSH and activated by glycine. These effects, which were not found in the enzyme from Xenopus laevis, may have a regulatory significance. 5. Isotope-exchange experiments revealed fundamental differences in the partial reactions catalysed by the rat and Xenopus laevis synthetases. The enzyme from Xenopus laevis appears to follow a Bi Bi Uni Uni Ping Pong mechanism, with glutamyl-enzyme as intermediate before the addition of cysteine and the release of gamma-glutamylcysteine. The results for the rat liver enzyme are consistent with a Tri Tri sequential mechanism.  相似文献   

14.
Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted gamma-glutamylcysteine synthetase (gamma-ECS), foliar levels of GSH were raised threefold. Paradoxically, increased GSH biosynthetic capacity in the chloroplast resulted in greatly enhanced oxidative stress, which was manifested as light intensity-dependent chlorosis or necrosis. This phenotype was associated with foliar pools of both GSH and gamma-glutamylcysteine (the immediate precursor to GSH) being in a more oxidized state. Further manipulations of both the content and redox state of the foliar thiol pools were achieved using hybrid transgenic plants with enhanced glutathione synthetase or glutathione reductase activity in addition to elevated levels of gamma-ECS. Given the results of these experiments, we suggest that gamma-ECS-transformed plants suffered continuous oxidative damage caused by a failure of the redox-sensing process in the chloroplast.  相似文献   

15.
Hyaluronan is a major macromolecular polysaccharide component of the extra-cellular matrix that confers structural frameworks for cells. Despite its relatively simple chemical composition, hyaluronan mediates many other important functional aspects including signalling activity during embryonic morphogenesis, cellular regeneration and wound healing. Abnormalities in hyaluronan metabolism have been implicated in many diseases, such as inflammatory disorders, cardiovascular diseases and cancer. To date, it has become increasingly clear that hyaluronan production in vertebrates is tightly regulated by three hyaluronan synthases and that hyaluronan catabolism is regulated by an enzymatic degradation reaction involving several hyaluronidases. Together, these discoveries have provided key insights into the physiological roles of hyaluronan and a deeper understanding of the mechanisms underlying altered hyaluronan turnover in diseases. The central aim of this review article is therefore to highlight the multiple roles of hyaluronan in physiological and pathological states via its complex turnover regulation.  相似文献   

16.
The zonal distribution of GSH metabolism was investigated by comparing hepatocytes obtained from the periportal (zone 1) or perivenous (zone 3) region by digitonin/collagenase perfusion. Freshly isolated periportal and perivenous cells had similar viability (dye exclusion, lactate dehydrogenase leakage and ATP content) and GSH content (2.4 and 2.7 mumol/g respectively). During incubation, periportal cells slowly accumulated GSH (0.35 mumol/h per g), whereas in perivenous cells a decrease occurred (-0.14 mumol/h per g). Also, in the presence of either L-methionine or L-cysteine (0.5 mM) periportal hepatocytes accumulated GSH much faster (3.5 mumol/h per g) than did perivenous cells (1.9 mumol/h per g). These periportal-perivenous differences were also found in cells from fasted rats. Efflux of GSH was faster from perivenous cells than from periportal cells, but this difference only explained 10-20% of the periportal-perivenous difference in accumulation. Furthermore, periportal cells accumulated GSH to a plateau 26-40% higher than in perivenous cells. There was no significant difference in gamma-glutamylcysteine synthetase or glutathione synthetase activity between the periportal and perivenous cell preparations. The periportal-perivenous difference in GSH accumulation was unaffected by inhibition of gamma-glutamyl transpeptidase or by 5 mM-glutamate or -glutamine, but was slightly diminished by 2 mM-L-methionine. This suggests differences between periportal and perivenous cells in their metabolism and/or transport of (sulphur) amino acids. Our results suggest that a lower GSH replenishment capacity of the hepatocytes from the perivenous region may contribute to the greater vulnerability of this region to xenobiotic damage.  相似文献   

17.
Effects of prostaglandin A2 (PGA2) on glutathione (GSH) status in L-1210 cells were examined. When the cells were cultured in the presence of PGA2, a persistent rise of cellular GSH concentration was observed 6 h after the addition of PGA2. This stimulatory effect of PGA2 was abolished if the cells were pretreated with an enzyme inhibitor of GSH synthesis, buthionine sulfoximine. Subsequent study with cell free extract of cultured L-1210 has revealed that PGA2 stimulated the biosynthesis of gamma-glutamylcysteine synthetase (EC 6.3.2.2). Actinomycin D inhibited this stimulatory effect of PGA2 on cultured cells. The optimal pH, Km value for glutamic acid and sensitivity to inhibitors of gamma-glutamylcysteine synthetase from PGA2 treated and nontreated cells were virtually the same. Thus, our findings suggest that PGA2 induced gamma-glutamylcysteine synthetase in cultured L-1210 cells which is responsible for the elevated level of GSH in these cells.  相似文献   

18.
19.
Glutathione (GSH) is the major low molecular weight thiol in plants with different functions in stress defence and the transport and storage of sulphur. Its synthesis is dependent on the supply of its constituent amino acids cysteine, glutamate, and glycine. GSH is a feedback inhibitor of the sulphate assimilation pathway, the primary source of cysteine synthesis. Sulphate assimilation has been analysed in transgenic poplars (Populus tremula x P. alba) overexpressing gamma-glutamylcysteine synthetase, the key enzyme of GSH synthesis, and the results compared with the effects of exogenously added GSH. Although foliar GSH levels were 3-4-fold increased in the transgenic plants, the activities of enzymes of sulphate assimilation, namely ATP sulphurylase, adenosine 5'-phosphosulphate reductase (APR), sulphite reductase, serine acetyltransferase, and O-acetylserine (thiol)lyase were not affected in three transgenic lines compared with the wild type. Also the mRNA levels of these enzymes were not altered by the increased GSH levels. By contrast, an increase in GSH content due to exogenously supplied GSH resulted in a strong reduction in APR activity and mRNA accumulation. This feedback regulation was reverted by simultaneous addition of O-acetylserine (OAS). However, OAS measurements revealed that OAS cannot be the only signal responsible for the lack of feedback regulation of APR by GSH in the transgenic poplars.  相似文献   

20.
The transition from the vegetative rosette stage to the reproductive growth stage (bolting) in the rosette plant Eustoma grandiflorum has a strict requirement for vernalization, a treatment that causes oxidative stress. Since we have shown that reduced glutathione (GSH) and its biosynthesis are associated with bolting in another rosette plant Arabidopsis thaliana, we here investigated whether a similar mechanism governs the vernalization-induced bolting of E. grandiflorum. Addition of GSH or its precursor cysteine, instead of vernalization, induced bolting but other thiols, dithiothreitol and 2-mercaptoethanol, did not. The inductive effect of vernalization on bolting was nullified by addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, without decreasing the plant growth rate. BSO-mediated inhibition of bolting was reversed by addition of GSH but not by cysteine. These indicate that vernalization-induced bolting involves GSH biosynthesis and is specifically regulated by GSH. Plant GSH increased during the early vernalization period along with the activity of gamma-glutamylcysteine synthetase that catalyzes the first step of GSH biosynthesis, although there was little change in amounts of GSH precursor thiols, cysteine and gamma-glutamylcysteine. These findings strongly suggest that vernalization stimulates GSH synthesis and synthesized GSH specifically determines the bolting time of E. grandiflorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号