首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The properties of the mitochondrial succinate-cytochrome c reductase   总被引:2,自引:0,他引:2  
The cytochromes b and bT of pigeon heart mitochondria have half-reduction potentials (Em's) of +30 mV and −30 mV at pH 7.2. The midpoint potentials of these cytochromes become more negative by 30–60 mV per pH unit when the pH is made more alkaline. Detergents may be used to prepare a succinate-cytochrome c reductase free of cytochrome oxidase in which the activation of electron transport induced by oxidation of cytochrome c1 causes the half-reduction potential of cytochrome bT to become at least 175 mV more positive than in the absence of electron transport. This change is interpreted as indicating that the primary energy conservation reaction at site 2 remains fully functional in the purified reductase. Preliminary electron paramagnetic resonance spectra of the succinate-cytochrome c reductase as measured at near liquid helium temperatures are presented.  相似文献   

2.
Methyl-4-azidobenzoimidate was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c bound to cytochrome c-depleted mitochondria with the same Kd as native cytochrome c and restored oxygen uptake to the same extent. Irradiation of cytochrome c-depleted mitochondrial membranes with 3- to 4-fold excess of photoaffinity-labeled cytochrome c over cytochrome c oxidase resulted in covalent binding of the derivative to the membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on an agarose Bio-Gel-A-5m showed that the labeled cytochrome c was bound covalently to succinate-cytochrome c reductase. The covalently bound cytochrome c was active in mediating electron transfer between its reductase and oxidase. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the succinate-cytochrome c reductase containing photoaffinity-labeled 125I-cytochrome c showed that the reductase contained a protein binding site for cytochrome c. It is suggested that cytochrome c1 is the most likely site for the cytochrome c binding in mitochondria in situ.  相似文献   

3.
Mitochondria-derived oxygen-free radical(s) are important mediators of oxidative cellular injury. It is widely hypothesized that excess NO enhances O(2)(?-) generated by mitochondria under certain pathological conditions. In the mitochondrial electron transport chain, succinate-cytochrome c reductase (SCR) catalyzes the electron transfer reaction from succinate to cytochrome c. To gain the insights into the molecular mechanism of how NO overproduction may mediate the oxygen-free radical generation by SCR, we employed isolated SCR, cardiac myoblast H9c2, and endothelial cells to study the interaction of NO with SCR in vitro and ex vivo. Under the conditions of enzyme turnover in the presence of NO donor (DEANO), SCR gained pro-oxidant function for generating hydroxyl radical as detected by EPR spin trapping using DEPMPO. The EPR signal associated with DEPMPO/(?)OH adduct was nearly completely abolished in the presence of catalase or an iron chelator and partially inhibited by SOD, suggesting the involvement of the iron-H(2)O(2)-dependent Fenton reaction or O(2)(?-)-dependent Haber-Weiss mechanism. Direct EPR measurement of SCR at 77K indicated the formation of a nonheme iron-NO complex, implying that electron leakage to molecular oxygen was enhanced at the FAD cofactor, and that excess NO predisposed SCR to produce (?)OH. In H9c2 cells, SCR-dependent oxygen-free radical generation was stimulated by NO released from DEANO or produced by the cells following exposure to hypoxia/reoxygenation. With shear exposure that led to overproduction of NO by the endothelium, SCR-mediated oxygen-free radical production was also detected in cultured vascular endothelial cells.  相似文献   

4.
5.
6.
Two cytochrome b proteins were isolated from succinate-cytochrome c reductase and the cytochrome b-c1 complex. Their molecular weights were determined to be 37,000 and 17,000 daltons by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Spectral properties and amino acid composition of these two proteins are reported in the paper.  相似文献   

7.
1. Evidence is presented for the presence of a stable ubisemiquinone pair in the vicinity of iron-sulphur centre S-3, based on its thermodynamic and spin relaxation properties. 2. These semiquinones are coupled by dipolar interaction; quantitative analysis of the signals of the spin-coupled semiquinones (at pH 7.4) gives midpoint redox potentials E1 (oxidized to semiquinone state) and E2 (semiquinone to fully reduced state) of 140 and 80mV, respectively, for individual ubiquinones. 3. Values of pKS (pK of the semiquinone form) below 6.5 and pKR (pK of the fully reduced ubiquinone) of about 8.0 or above were estimated from the pH-dependence of the midpoint potentials of the spin coupled signals. Thus the ubisemiquinone associated with succinate dehydrogenase (designated as SQS) functions mostly in the anionic form of the physiological pH range. 4. Theonyltrifluoroacetone, a specific inhibitor of the succinate-ubiquinone reductase segment of the respiratory chain, destabilized the intermediate redox state; thus it quenches both the g = 2.00 signal and ubisemiquinone (SQS) and split signals from the spin coupled pair. This inhibitor has no significant effect on another bound ubisemiquinone species present in the cytochrome bc1 region (designated as SQC). 5. The possible function and location of these stabilized ubisemiquinone species were discussed in connection with Site-II energy transduction.  相似文献   

8.
To investigate the protein-ubiquinone interaction in the bovine heart mitochondrial succinate-cytochrome c reductase region of the respiratory chain, three fluorine substituted ubiquinone derivatives, 2,3-dimethoxy-6-(9'-fluorodecyl)-1,4-benzoquinone (9FQ), 2-methoxy-5-trifluoromethyl-6-decyl-1,4-benzoquinone (TFQ), and 2-methoxy-5-trifluoromethyl-6-(9'-fluorodecyl)-1,4-benzoquinone (9FTFQ), were synthesized. 9FQ was synthesized by radical coupling of Q0 and bis(10-fluoroundecanoyl)peroxide. The latter was prepared by fluorination of undecylenic acid followed by thionylchloride treatment and peroxidation. TFQ was synthesized from 2,2,2-trifluoro-p-cresol by methylation, nitration, reduction, acetylation, nitration, reduction, oxidation, and radical alkylation. 9FTFQ was prepared by the radical alkylation of 2-methoxy-5-trifluoromethyl-1,4-benzoquinone with bis(10-fluoroundecanoyl)peroxide. All three fluoro-Q derivatives are active (greater than 50% the activity of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone) when used as electron acceptors for succinate-ubiquinone reductase. However, only 9FQ is active when used as an electron donor for ubiquinol-cytochrome c reductase or as an electron mediator for succinate-cytochrome c reductase. Both TFQ and 9FTFQ are competitive inhibitors for ubiquinol-cytochrome c reductase. A 19FNMR peak-broadening effect was observed for 9FQ when it was reconstituted with ubiquinone-depleted ubiquinol-cytochrome c reductase. A drastic up-field chemical shift was observed for TFQ when it was reconstituted with ubiquinone-depleted reductase. These results indicate that the binding environments of the benzoquinone ring and the alkyl side chain of the Q molecule are different. The strong up-field chemical shift for TFQ, and lack of significant chemical shift for 9FQ, suggest that the benzoquinone ring is bound near the paramagnetic cytochrome b heme.  相似文献   

9.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome c1 is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain.  相似文献   

10.
Abrupt changes in the Arrhenius activation energy of membrane-bound enzymes have often been correlated with changes in the physical state of membrane phospholipids. Similar changes in activation energy have also been found in soluble enzymes. The possibility exists, therefore, that in some of the membrane-bound enzymes the changes might reflect intrinsic changes of the proteins independent of changes in the membrane phospholipids. This hypothesis was investigated using Drosophila mitochondria isolated from wild type and the mutant Ocd ts-1. In this mutant it has been shown that succinate-cytochrome c reductase exhibits a change in Arrhenius activation energy at 18 degrees C which is not found in the wild type (Sondergaard, L., Nielsen, N.C. and Smillie, R.M. (1975) FEBS lett. 50, 126-129). A quantitative thin-layer chromatographic analysis of mitochondrial phospholipids showed sphingomyelin to be more abundant in the wild type than in the mutant (5.2% and 4.3% of the total phospholipids, respectively). Since it was shown that the succinate-cytochrome c reductase had a lipid requirement for full activity, reciprocal rebinding experiments were done. These experiments showed that the reconstituted membranes exhibited the change in activation energy at 18 degrees C only when the protein moiety came from mutant mitochondria, that is, the change was independent of the source of the phospholipids used.  相似文献   

11.
Succinate-cytochrome c reductase was inhibited in vitro and in vivo by phenobarbitone, aminophylline and neostigmine using both 2,6-dichlorophenolindophenol (DCIP) and cytochrome c (cyt c) as substrates. The enzyme was also activated by gallamine towards both substrates. In vitro, phenobarbitone and aminophylline inhibited the enzyme with respect to the reduction of DCIP and cyt c in a non-competitive manner with Ki values of 1.5 x 10(-5) and 5.7 x 10(-5)M, respectively. Moreover, neostigmine competitively inhibited the enzyme towards both substrates with Ki values of 1.36 x 10(-5) and 1.50 x 10(-5)M, respectively.  相似文献   

12.
In the succinate-cytochrome c reductase, the reduction of cytochrome b has been found to be triphasic: an initial rapid partial reduction was followed first by a rapid oxidation and then finally by a slow reduction. The initial reduction of cytochrome b was faster than that of cytochrome c1 and the final slow reduction of cytochrome b began when cytochrome c1 reduction was approaching completion. In presence of the inhibitors antimycin A or HQNO the reduction of cytochrome b became monophasic. Hysteresis or a kinetic cooperative effect of a factor controlling cytochrome b oxidation has been suggested as a possible explanation for the triphasic reduction of cytochrome b.  相似文献   

13.
14.
Crystallization of mitochondrial ubiquinol-cytochrome c reductase.   总被引:2,自引:0,他引:2  
W H Yue  Y P Zou  L Yu  C A Yu 《Biochemistry》1991,30(9):2303-2306
Ubiquinol-cytochrome c reductase of beef heart mitochondria was crystallized in the presence of decanoyl-N-methylglucamide, heptanetriol, and sodium chloride with poly(ethylene glycol) as precipitant. The largest crystal has dimensions of 4 x 2 x 1 mm. The crystalline enzyme is composed of 10 subunits. It contains 2.5 nmol of ubiquinone, 8.4 nmol of cytochrome b, 4.2 nmol of cytochrome c1, 4.2 nmol of iron-sulfur cluster, and 140 nmol of phospholipid per milligram of protein. Of the last, 36% is with diphosphatidylglycerol. The crystals are very stable in the cold and show full enzymatic activity when redissolved in aqueous solution. Absorption spectra of the redissolved crystals show a Soret to UV ratio of 0.88 and 1.01 in the oxidized and the reduced forms, respectively.  相似文献   

15.
It was shown that the efficiency of succinate-cytochrome c reductase inhibitors, i. e. neutral polar substances, negatively charged phenols and 2-hydroxy-3-alkyl-1.4-naphthoquinones, is increased with an increase in their hydrophobicity. Plotting-lg C50 versus lg P for all the three groups of inhibitors, the role of functional groups of the inhibitors in their binding to the corresponding sites of the respiratory chain was determined. The efficiency of inhibition by neutral polar substances does not depend on the chemical nature of the inhibitors and is described by the equation-lg C50 = 0.864 lg P + 0.222 (r = 0.99). The negatively charged group of dissociated phenols determines the specificity of the inhibitor binding to the terminal site of the succinate dehydrogenase complex and is involved in the inhibitor binding to the enzyme. The carbonyl group of 2-hydroxy-3-alkyl-1.4-naphthoquinones selectively increases the affinity and efficiency of binding of these inhibitors to the b-c1 site of the respiratory chain.  相似文献   

16.
Antimycin-insensitive succinate-cytochrome c reductase activity has been detected in pure, reconstitutively active succinate dehydrogenase. The enzyme catalyzes electron transfer from succinate to cytochrome c at a rate of 0.7 mumole succinate oxidized per min per mg protein, in the presence of 100 microM cytochrome c. This activity, which is about 2% of that of reconstitutive (the ability of succinate dehydrogenase to reconstitute with coenzyme ubiquinone-binding proteins (QPs) to form succinate-ubiquinone reductase) or succinate-phenazine methosulfate activity in the preparation, differs from antimycin-insensitive succinate-cytochrome c reductase activity detected in submitochondrial particles or isolated succinate-cytochrome c reductase. The Km for cytochrome c for the former is too high to be measured. The Km for the latter is about 4.4 microM, similar to that of antimycin-sensitive succinate-cytochrome c activity in isolated succinate-cytochrome c reductase, suggesting that antimycin-insensitive succinate-cytochrome c activity of succinate-cytochrome c reductase probably results from incomplete inhibition by antimycin. Like reconstitutive activity of succinate dehydrogenase, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase is sensitive to oxygen; the half-life is about 20 min at 0 degrees C at a protein concentration of 23 mg/ml. In the presence of QPs, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase disappears and at the same time a thenoyltrifluoroacetone-sensitive succinate-ubiquinone reductase activity appears. This suggests that antimycin-insensitive succinate-cytochrome c reductase activity of succinate dehydrogenase appears when succinate dehydrogenase is detached from the membrane or from QPs. Reconstitutively active succinate dehydrogenase oxidizes succinate using succinylated cytochrome c as electron acceptor, suggesting that a low potential intermediate (radical) may be involved. This suggestion is confirmed by the detection of an unknown radical by spin trapping techniques. When a spin trap, alpha-phenyl-N-tert-butylnitrone (PBN), is added to a succinate oxidizing system containing reconstitutively active succinate dehydrogenase, a PBN spin adduct is generated. Although this PBN spin adduct is identical to that generated by xanthine oxidase, indicating that a perhydroxy radical might be involved, the insensitivity of this antimycin-insensitive succinate-cytochrome c reductase activity to superoxide dismutase and oxygen questions the nature of this observed radical.  相似文献   

17.
18.
19.
20.
Antimycin, when added to resolved succinate-cytochrome c reductase complex in amounts sufficient to partially inhibit succinate-cytochrome c reductase activity, causes a decrease in inhibition of the residual succinate-cytochrome c reductase activity by 2-thenoyltrifluoroacetone. Antimycin has no effect on the inhibition of succinate-ubiquinone reductase activity by 2-thenoyltrifluoroacetone. We propose that antimycin increases the steady state concentration of ubisemiquinone in the reductase complex, and that 2-thenoyltrifluoracetone is competitive with ubisemiquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号