首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Validation of Trypanosoma brucei trypanothione synthetase as drug target   总被引:4,自引:0,他引:4  
In trypanosomes, the parasite-specific thiol trypanothione [T(SH)2] fulfills various functions, the best established being detoxification of H2O2 and organic hydroperoxides and ribonucleotide reduction. Recently, a trypanothione synthetase (Tb-TryS) gene from Trypanosoma brucei was isolated and the heterologously expressed Tb-TryS catalyzed the entire synthesis of T(SH)2 from glutathione (GSH) and spermidine in vitro. To confirm the in situ function of the complex Tb-TryS activities and to evaluate the importance of T(SH)2 metabolism in T. brucei, TryS suppression by double-stranded RNA interference was performed. Knockdown of TryS led to depletion of both T(SH)2 and glutathionylspermidine (Gsp) and accumulation of GSH, while concomitantly impairment of viability and arrest of proliferation were observed. TryS-downregulated cells displayed a significantly increased sensitivity to H2O2 and tert.-butyl hydroperoxide. These data verify the hypothesis that in T. brucei, a single enzyme synthesizes the spermidine-conjugated thiols (Gsp and T(SH)2) and further confirms the significance of trypanothione in the defense against oxidative stress and the maintenance of viability and proliferation in unstressed parasites.  相似文献   

2.
A kinetic model of trypanothione [T(SH)(2)] metabolism in Trypanosoma cruzi was constructed based on enzyme kinetic parameters determined under near-physiological conditions (including glutathione synthetase), and the enzyme activities, metabolite concentrations and fluxes determined in the parasite under control and oxidizing conditions. The pathway structure is characterized by a T(SH)(2) synthetic module of low flux and low catalytic capacity, and another more catalytically efficient T(SH)(2) -dependent antioxidant/regenerating module. The model allowed quantification of the contribution of each enzyme to the control of T(SH)(2) synthesis and concentration (flux control and concentration control coefficients, respectively). The main control of flux was exerted by γ-glutamylcysteine synthetase (γECS) and trypanothione synthetase (TryS) (control coefficients of 0.58-0.7 and 0.49-0.58, respectively), followed by spermidine transport (0.24); negligible flux controls by trypantothione reductase (TryR) and the T(SH)(2)-dependent antioxidant machinery were determined. The concentration of reduced T(SH)(2) was controlled by TryR (0.98) and oxidative stress (-0.99); however, γECS and TryS also exerted control on the cellular level of T(SH(2)) when they were inhibited by more than 70%. The model predicted that in order to diminish the T(SH)(2) synthesis flux by 50%, it is necessary to inhibit γECS or TryS by 58 or 63%, respectively, or both by 50%, whereas more than 98% inhibition was required for TryR. Hence, simultaneous and moderate inhibition of γECS and TryS appears to be a promising multi-target therapeutic strategy. In contrast, use of highly potent and specific inhibitors for TryR and the antioxidant machinery is necessary to affect the antioxidant capabilities of the parasites.  相似文献   

3.
In pathogenic trypanosomes, trypanothione synthetase (TryS) catalyzes the synthesis of both glutathionylspermidine (Gsp) and trypanothione (bis(glutathionyl)spermidine (T(SH)2)). Here we present a thorough kinetic analysis of Trypanosoma brucei TryS in a newly developed phosphate buffer system at pH 7.0 and 37 °C, mimicking the physiological environment of the enzyme in the cytosol of bloodstream parasites. Under these conditions, TryS displays Km values for GSH, ATP, spermidine, and Gsp of 34, 18, 687, and 32 μm, respectively, as well as Ki values for GSH and T(SH)2 of 1 mm and 360 μm, respectively. As Gsp hydrolysis has a Km value of 5.6 mm, the in vivo amidase activity is probably negligible. To obtain deeper insight in the molecular mechanism of TryS, we have formulated alternative kinetic models, with elementary reaction steps represented by linear kinetic equations. The model parameters were fitted to the extensive matrix of steady-state data obtained for different substrate/product combinations under the in vivo-like conditions. The best model describes the full kinetic profile and is able to predict time course data that were not used for fitting. This system''s biology approach to enzyme kinetics led us to conclude that (i) TryS follows a ter-reactant mechanism, (ii) the intermediate Gsp dissociates from the enzyme between the two catalytic steps, and (iii) T(SH)2 inhibits the enzyme by remaining bound at its product site and, as does the inhibitory GSH, by binding to the activated enzyme complex. The newly detected concerted substrate and product inhibition suggests that TryS activity is tightly regulated.  相似文献   

4.
5.
A study of Trypanosomatidae GC distribution and codon usage is presented. The codon usage patterns in coincidence with the phylogenetical data are similar in Crithidia and Leishmania, whereas they are more divergent in Trypanosoma brucei and T. cruzi. The analysis of the GC mutational pressure in these organisms reveals that T. brucei, and to a lesser extent T. cruzi, have evolved towards a more balanced use of all bases, whereas Leishmania and Crithidia retain features of a primeval genetic apparatus. Tables with the approximated GC mutational pressure in homologous genes, and codon usage in Trypanosomatidae are presented.  相似文献   

6.
Trypanosoma brucei is the cause of the diseases known as sleeping sickness in humans (T. brucei ssp. gambiense and ssp. rhodesiense) and ngana in domestic animals (T. brucei brucei) in Africa. Procyclic trypomastigotes, the tsetse vector stage, express a surface-bound trans-sialidase that transfers sialic acid to the glycosylphosphatidylinositol anchor of procyclin, a surface glycoprotein covering the parasite surface. Trans-sialidase is a unique enzyme expressed by a few trypanosomatids that allows them to scavenge sialic acid from sialylated compounds present in the infected host. The only enzyme extensively characterized is that of the American trypanosome T. cruzi (TcTS). In this work we identified and characterized the gene encoding the trans-sialidase from T. brucei brucei (TbTS). TbTS genes are present at a small copy number, at variance with American trypanosomes where a large gene family is present. The recombinant TbTS protein has both sialidase and trans-sialidase activity, but it is about 10 times more efficient in transferring than in hydrolysing sialic acid. Its N-terminus contains a region of 372 amino acids that is 45% identical to the catalytic domain of TcTS and contains the relevant residues required for catalysis. The enzymatic activity of mutants at key positions involved in the transfer reaction revealed that the catalytic sites of TcTS and TbTS are likely to be similar, but are not identical. As in the case of TcTS and TrSA, the substitution of a conserved tryptophanyl residue changed the substrate specificity rendering a mutant protein capable of hydrolysing both alpha-(2,3) and alpha-(2,6)-linked sialoconjugates.  相似文献   

7.
Contrary to Leishmania spp. and Trypanosoma cruzi, Trypanosoma brucei bloodstream forms do not synthesise their own sterols but take these compounds in the form of cholesterol directly from the mammalian host. However, procyclic insect stages synthesise ergosterol rather than cholesterol. Here the sub-cellular localisation of the first committed enzyme of this pathway of isoprenoid synthesis 3-hydroxy-3-methylglutaryl-coenzyme A reductase in T. brucei procyclics (0.9 nmol x min(-1) x mg(-1) protein) was carried out using both cell-fractionation by isopycnic centrifugation and digitonin-titration experiments. The majority of the NADP+-linked 3-hydroxy-3-methylglutaryl-coenzyme A reductase is a soluble enzyme present in the mitochondrial matrix with some additional membrane-associated activity in glycosomes and possibly in the endoplasmic reticulum. It is suggested that the active metabolism of threonine and/or leucine as preferred 2-carbon source for the incorporation of acetyl units into lipids and/or sterols in the mitochondrion of T. brucei procyclics is the explanation for a high 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in these protozoan organelles.  相似文献   

8.
Protozoa of the order Kinetoplastida differ from other organisms in their ability to conjugate glutathione (l-gamma-glutamyl-cysteinyl-glycine) and spermidine to form trypanothione [N(1),N(8)-bis(glutathionyl)spermidine], a metabolite involved in defense against chemical and oxidant stress and other biosynthetic functions. In Crithidia fasciculata, trypanothione is synthesized from GSH and spermidine via the intermediate glutathionylspermidine in two distinct ATP-dependent reactions catalyzed by glutathionylspermidine synthetase (GspS; EC ) and trypanothione synthetase (TryS; EC ), respectively. Here we have cloned a single copy gene (TcTryS) from Trypanosoma cruzi encoding a protein with 61% sequence identity with CfTryS but only 31% with CfGspS. Saccharomyces cerevisiae transformed with TcTryS were able to synthesize glutathionylspermidine and trypanothione, suggesting that this enzyme is able to catalyze both biosynthetic steps, unlike CfTryS. When cultures were supplemented with aminopropylcadaverine, yeast transformants contained glutathionylaminopropylcadaverine and homotrypanothione [N(1),N(9)-bis(glutathionyl)aminopropylcadaverine], metabolites that have been previously identified in T. cruzi, but not in C. fasciculata. Kinetic studies on recombinant TcTryS purified from Escherichia coli revealed that the enzyme displays high-substrate inhibition with glutathione (K(m) and K(i) of 0.57 and 1.2 mm, respectively, and k(cat) of 3.4 s(-1)), but obeys Michaelis-Menten kinetics with spermidine, aminopropylcadaverine, glutathionylspermidine, and MgATP as variable substrate. The recombinant enzyme possesses weak amidase activity and can hydrolyze trypanothione, homotrypanothione, or glutathionylspermidine to glutathione and the corresponding polyamine.  相似文献   

9.
Trypanosomes are unicellular eukaryotes that cause disease in humans and other mammals. Trypanosoma cruzi and Trypanosoma brucei are the causative agents, respectively, of Chagas disease in the Americas and sleeping sickness in sub-Saharan Africa. To better comprehend the interaction of these parasites with their hosts, understanding the mechanisms involved in the generation of genetic variability is critical. One such mechanism is mismatch repair (MMR), which has a crucial, evolutionarily conserved role in maintaining the fidelity of DNA replication, as well as acting in other cellular processes, such as DNA recombination. Here we have attempted to complement T. brucei MMR through the expression of MSH2 from T. cruzi. Our results show that T. brucei MSH2-null mutants are more sensitive to hydrogen peroxide (H2O2) than wild type cells, suggesting the involvement of MSH2 in the response to oxidative stress in this parasite. This phenotype is reverted by the expression of either the T. cruzi or the T. brucei MSH2 protein in the MSH2-null mutants. In contrast, MMR complementation, as assessed by resistance to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and microsatellite instability, was not achieved by the heterologous expression of T. cruzi MSH2. This finding, associated to the demonstration that mutation of MLH1, another component of the MMR system, did not affect sensitivity of T. brucei cells to H2O2, suggests an additional role of MSH2 in dealing with oxidative damage in these parasites, which may occur independently of MMR.  相似文献   

10.
Activity and kinetics of phospholipase A2 (PLA2) from Trypanosoma brucei gambiense (Wellcome strain) and Trypanosoma brucei brucei (GUTat 3.1) were examined using two different fluorescent substrates. The activity in the supernatants of sonicated parasites was Ca2+-independent, strongly stimulated by Triton X-100 with optimum activity at 37 degrees C and pH 6.5-8.5. To encourage a possible interaction between the parasite enzyme and organotin compounds, fatty acid derivatives of dibutyltin dichloride were synthesized and evaluated as potential inhibitors of PLA2. The enzyme from the two-trypanosome species differ with respect to kinetic parameters and are noncompetitively inhibited by the organotin compounds. The Michaelis constant (KM) for PLA2 from T. b. brucei is 63.87 and 30.90 microM while for T. b. gambiense it is 119.64 and 32.91 microM for the substrates 1,2-bis-(1-pyrenebutanoyl)-sn-glycero-3-phosphocholine (PBGPC) and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBDC12-HPC), respectively.  相似文献   

11.
Tryparedoxin peroxidases (TXNPx) are peroxiredoxin-type enzymes that detoxify hydroperoxides in trypanosomatids. Reduction equivalents are provided by trypanothione [T(SH)2] via tryparedoxin (TXN). The T(SH)2-dependent peroxidase system was reconstituted from TXNPx and TXN of T. brucei brucei (TbTXN-Px and TbTXN). TbTXNPx efficiently reduces organic hydroperoxides and is specifically reduced by TbTXN, less efficiently by thioredoxin, but not by glutathione (GSH) or T(SH)2. The kinetic pattern does not comply with a simple rate equation but suggests negative co-operativity of reaction centers. Gel permeation of oxidized TbTXNPx yields peaks corresponding to a decamer and higher aggregates. Electron microscopy shows regular ring structures in the decamer peak. Upon reduction, the rings tend to depolymerise forming open-chain oligomers. Co-oxidation of TbTXNPx with TbTXNC43S yields a dead-end intermediate mimicking the catalytic intermediate. Its size complies with a stoichiometry of one TXN per subunit of TXNPx. Electron microscopy of the intermediate displays pentangular structures that are compatible with a model of a decameric TbTXNPx ring with ten bound TbTXN molecules. The redox-dependent changes in shape and aggregation state, the kinetic pattern and molecular models support the view that, upon oxidation of a reaction center, other subunits adopt a conformation that has lower reactivity with the hydroperoxide.  相似文献   

12.
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.  相似文献   

13.
Cytidine deaminase (cytidine aminohydrolase, 3.5.4.5) is present in Crithidia fasciculata (a mosquito parasite) and in Trypanosoma cruzi (a human pathogen). The enzyme from C. fasciculata deaminated both cytidine and deoxycytidine, the affinity for the former being much lower than the latter. Affinities for both substrates are equal for the T. cruzi enzyme. The production of the enzyme in C. fasciculata was significantly stimulated by the addition of a number of pyrimidine nucleosides (cytidine, uridine, 5-bromouridine, thymidine, orotidine) to the culture media. Only cytidine stimulated enzyme production in T. cruzi. The enzyme from both organisms was unstable in air, even in the frozen state. Stabilization was achieved under anaerobic conditions.  相似文献   

14.
In this article, we report the results of an analysis of the glycolytic enzyme enolase (2-phospho-d-glycerate hydrolase) of Trypanosoma brucei. Enolase activity was detected in both bloodstream-form and procyclic insect-stage trypanosomes, although a 4.5-fold lower specific activity was found in the cultured procyclic homogenate. Subcellular localization analysis showed that the enzyme is only present in the cytosol. The T. brucei enolase was expressed in Escherichia coli and purified to homogeneity. The kinetic properties of the bacterially expressed enzyme showed strong similarity to those values found for the natural T. brucei enolase present in a cytosolic cell fraction, indicating a proper folding of the enzyme in E. coli. The kinetic properties of T. brucei enolase were also studied in comparison with enolase from rabbit muscle and Saccharomyces cerevisiae. Functionally, similarities were found to exist between the three enzymes: the Michaelis constant (Km) and KA values for the substrates and Mg2+ are very similar. Differences in pH optima for activity, inhibition by excess Mg2+ and susceptibilities to monovalent ions showed that the T. brucei enolase behaves more like the yeast enzyme. Alignment of the amino acid sequences of T. brucei enolase and other eukaryotic and prokaryotic enolases showed that most residues involved in the binding of its ligands are well conserved. Structure modelling of the T. brucei enzyme using the available S. cerevisiae structures as templates indicated that there are some atypical residues (one Lys and two Cys) close to the T. brucei active site. As these residues are absent from the human host enolase and are therefore potentially interesting for drug design, we initiated attempts to determine the three-dimensional structure. T. brucei enolase crystals diffracting at 2.3 A resolution were obtained and will permit us to pursue the determination of structure.  相似文献   

15.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical cysteine homologues of the classical selenocysteine-containing glutathione peroxidases. Although one of the sequences, peroxidase III, carries both putative mitochondrial and glycosomal targeting signals, the proteins are detectable only in the cytosol and mitochondrion of mammalian bloodstream and insect procyclic T. brucei. The enzyme is a trypanothione/tryparedoxin peroxidase as are the 2 Cys-peroxiredoxins of the parasite. Hydrogen peroxide, thymine hydroperoxide, and linoleic acid hydroperoxide are reduced with second order rate constants of 8.7 x 10(4), 7.6 x 10(4), and 4 x 10(4) m(-1) s(-1), respectively, and represent probable physiological substrates. Phosphatidylcholine hydroperoxide is a very weak substrate and, in the absence of Triton X-100, even an inhibitor of the enzyme. The substrate preference clearly contrasts with that of the closely related T. cruzi enzyme, which reduces phosphatidylcholine hydroperoxides but not H(2)O(2). RNA interference causes severe growth defects in bloodstream and procyclic cells in accordance with the peroxidases being essential in both developmental stages. Thus, the cellular functions of the glutathione peroxidase-type enzymes cannot be taken over by the 2 Cys-peroxiredoxins that also occur in the cytosol and mitochondrion of the parasite.  相似文献   

16.
Názer E  Sánchez DO 《PloS one》2011,6(8):e24184
We have recently shown in T. cruzi that a group of RNA Binding Proteins (RBPs), involved in mRNA metabolism, are accumulated into the nucleolus in response to Actinomycin D (ActD) treatment. In this work, we have extended our analysis to other members of the trypanosomatid lineage. In agreement with our previous study, the mechanism seems to be conserved in L. mexicana, since both endogenous RBPs and a transgenic RBP were relocalized to the nucleolus in parasites exposed to ActD. In contrast, in T. brucei, neither endogenous RBPs (TbRRM1 and TbPABP2) nor a transgenic RBP from T. cruzi were accumulated into the nucleolus under such treatment. Interestingly, when a transgenic TbRRM1 was expressed in T. cruzi and the parasites exposed to ActD, TbRRM1 relocated to the nucleolus, suggesting that it contains the necessary sequence elements to be targeted to the nucleolus. Together, both experiments demonstrate that the mechanism behind nucleolar localization of RBPs, which is present in T. cruzi and L. mexicana, is not functional in T. brucei, suggesting that it has been lost or retained differentially during the evolution of the trypanosomatid lineage.  相似文献   

17.
In all trypanosomatids, including Trypanosoma brucei, glycolysis takes place in peroxisome-like organelles called glycosomes. These are closed compartments wherein the energy and redox (NAD(+)/NADH) balances need to be maintained. We have characterized a T. brucei gene called FRDg encoding a protein 35% identical to Saccharomyces cerevisiae fumarate reductases. Microsequencing of FRDg purified from glycosome preparations, immunofluorescence, and Western blot analyses clearly identified this enzyme as a glycosomal protein that is only expressed in the procyclic form of T. brucei but is present in all the other trypanosomatids studied, i.e. Trypanosoma congolense, Crithidia fasciculata and Leishmania amazonensis. The specific inactivation of FRDg gene expression by RNA interference showed that FRDg is responsible for the NADH-dependent fumarate reductase activity detected in glycosomal fractions and that at least 60% of the succinate secreted by the T. brucei procyclic form (in the presence of d-glucose as the sole carbon source) is produced in the glycosome by FRDg. We conclude that FRDg plays a key role in the energy metabolism by participating in the maintenance of the glycosomal NAD(+)/NADH balance. We have also detected a significant pyruvate kinase activity in the cytosol of the T. brucei procyclic cells that was not observed previously. Consequently, we propose a revised model of glucose metabolism in procyclic trypanosomes that may also be valid for all other trypanosomatids except the T. brucei bloodstream form. Interestingly, H. Gest has hypothesized previously (Gest, H. (1980) FEMS Microbiol. Lett. 7, 73-77) that a soluble NADH-dependent fumarate reductase has been present in primitive organisms and evolved into the present day fumarate reductases, which are quinol-dependent. FRDg may have the characteristics of such an ancestral enzyme and is the only NADH-dependent fumarate reductase characterized to date.  相似文献   

18.
High speed centrifugal supernatant fractions of homogenates of a number of trypanosomatids were assayed for thymidylate synthase (5,10-methylene-tetrahydrofolate: dUMP C-methyltransferase, EC 2.1.1.45) activity using the method of Lomax and Greenberg (1967) J. Biol. Chem. 242, 109-113). Similar activities were detected in Crithidia fasciculata, Crithidia oncopelti, the blood forms of Trypanosoma brucei, Trypansoma congolense and Trypanosoma lewisi and the blood, intracellular and culture forms of Trypanosoma cruzi, suggesting that all species synthesize at least some thymidylate de novo. The properties of the activities in C. fasciculata and the three forms of T. cruzi were compared with those of the isofunctional bacterial and mammalian enzymes. The trypanosotamid enzyme was inhibited by Mg2+, was much more sensitive to mercaptoethanol, had higher apparent Km values for substrate (dUMP) and cofactor (tetrahydrofolate), had a higher apparent molecular weight and was markedly more sensitive to inhibition by suramin. It is, therefore a possible target for chemotherapeutic attack, either on its own or in combination with a dihydrofolate reductase inhibitor. No evidence was obtained for the regulation of the trypanosomatid enzyme, either by its product, dTMP, or by dTDP or dTTp. This result agrees with previous studies which suggested that in trypanosomatids, the level of dTMP was regulated, at least in part, by a catabolic pathway consisting of a thymidylate phosphatase and a thymidine phosphorylase which degraded the excess of dTMP to thymine.  相似文献   

19.
In this work we describe the ability of living cells of Trypanosoma brucei brucei to hydrolyze extracellular ATP. In these intact parasites there was a low level of ATP hydrolysis in the absence of any divalent metal (4.72+/-0.51 nmol Pi x 10(-7) cells x h(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 27.15+/-2.91 nmol Pi x 10(-7) cells x h(-1). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2). CaCl(2) and ZnCl(2) were also able to stimulate the ATPase activity, although less than MgCl(2). The apparent K(m) for ATP was 0.61 mM. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid), as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. Living cells sequentially hydrolyzed the ATP molecule generating ADP, AMP and adenosine, and supplementation of the culture medium with ATP was able to sustain the proliferation of T. brucei brucei as well as adenosine supplementation. Furthermore, the E-NTPDase activity of T. brucei brucei is modulated by the availability of purines in the medium. These results indicate that this surface enzyme may play a role in the salvage of purines from the extracellular medium in T. brucei brucei.  相似文献   

20.
Topoisomerases are essential for orderly nucleic acid metabolism and cell survival and are proven targets for clinically useful antimicrobial and anticancer drugs. Interest in the topologically intricate mitochondrial DNA (kinetoplast or kDNA) of Trypanosoma brucei brucei and related kinetoplastid protozoan parasites has led to many reports of type II topoisomerases that participate in kDNA metabolism (we term the T. brucei brucei gene TbTOP2mt). We have now identified and characterized two new genes for type II topoisomerases in T. brucei brucei, termed TbTOP2alpha and TbTOP2beta. Phylogenetically, they share a common node with other nuclear topoisomerases, clearly distinct from a clade that includes the previously reported kinetoplastid genes, all of which are homologs of TbTOP2mt. Southern blot analysis reveals the new genes are single copy and positioned approximately 1.7 kb apart. Cognate mRNAs are expressed in African trypanosomes, but only a single message is detected in Leishmania or Crithidia. TbTOP2alpha encodes an ATP-dependent topoisomerase that appears as a single approximately 170-kDa band on immunoblots and localizes to the nucleus; RNA interference leads to pleomorphic nuclear (but not kDNA) abnormalities and early growth arrest. The role of TbTOP2beta is unclear. Although transcribed in trypanosomes, TbTOP2beta is not detected by beta-specific antiserum, and RNAi silencing results in no obvious phenotype. These studies indicate that African trypanosomes and related kinetoplastid human pathogens are unusual in having independent topoisomerase II genes to service their nuclear and mitochondrial genomes, and they highlight TbTOP2alpha as a promising target for the development of much-needed new therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号