首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Postcopulatory sexual selection is widely accepted to underlie the extraordinary diversification of sperm morphology. However, why does it favour longer sperm in some taxa but shorter in others? Two recent hypotheses addressing this discrepancy offered contradictory explanations. Under the sperm dilution hypothesis, selection via sperm density in the female reproductive tract favours more but smaller sperm in large, but the reverse in small, species. Conversely, the metabolic constraint hypothesis maintains that ejaculates respond positively to selection in small endothermic animals with high metabolic rates, whereas low metabolic rates constrain their evolution in large species. Here, we resolve this debate by capitalizing on the substantial variation in mammalian body size and reproductive physiology. Evolutionary responses shifted from sperm length to number with increasing mammalian body size, thus supporting the sperm dilution hypothesis. Our findings demonstrate that body-size-mediated trade-offs between sperm size and number can explain the extreme diversification in sperm phenotypes.  相似文献   

3.
Assessing how selection operates on several, potentially interacting, components of the ejaculate is a challenging endeavor. Ejaculates can be subject to natural and/or sexual selection, which can impose both linear (directional) and nonlinear (stabilizing, disruptive, and correlational) selection on different ejaculate components. Most previous studies have examined linear selection of ejaculate components and, consequently, we know very little about patterns of nonlinear selection on the ejaculate. Even less is known about how selection acts on the ejaculate as a functionally integrated unit, despite evidence of covariance among ejaculate components. Here, we assess how selection acts on multiple ejaculate components simultaneously in the broadcast spawning sessile invertebrate Mytilus galloprovincialis using the statistical tools of multivariate selection analyses. Our analyses of relative fertilization rates revealed complex patterns of selection on sperm velocity, motility, and morphology. Interestingly, the most successful ejaculates were made up of slower swimming sperm with relatively low percentages of motile cells, and sperm with smaller head volumes that swam in highly pronounced curved swimming trajectories. These results are consistent with an emerging body of literature on fertilization kinetics in broadcast spawners, and shed light on the fundamental nature of selection acting on the ejaculate as a functionally integrated unit.  相似文献   

4.
5.
Pujolar JM  Pogson GH 《Molecular ecology》2011,20(23):4968-4982
Gamete recognition proteins commonly experience positive Darwinian selection and evolve more rapidly than nonreproductive proteins, but the selective forces responsible for their adaptive diversification remain unclear. We examined the patterns of positive selection in the cognate interacting pair of proteins formed by sperm bindin and its egg receptor (EBR1) and in two regions of the sea urchin sperm receptor for egg jelly suREJ3 gene (exons 22 and 26) among four species of Strongylocentrotus sea urchins (S. purpuratus, S. droebachiensis, S. pallidus and S. franciscanus). The signatures of selection differed at each reproductive protein. A strong signal of positive selection was detected at bindin in all lineages even though the species compared had highly variable gamete traits and experience different intensities and forms of sexual selection and sexual conflict in nature. Weaker selection was observed at EBR1 but the small region studied precluded a clear understanding of the extent of sexual conflict between bindin and the EBR1 protein. At the suREJ3 locus, diversifying selection was observed in exon 22 but not exon 26, suggesting that these regions experience different selective pressures and evolutionary constraints. Positive selection was also detected within S. pallidus at suREJ‐22 because of the presence of 12 amino acid replacement mutations segregating at frequencies >0.10. Our results suggest that sexual conflict may be the predominant evolutionary mechanism driving the rapid diversification of reproductive proteins between, and polymorphism within, strongylocentrotid sea urchins.  相似文献   

6.
Post-copulatory sexual selection in the form of sperm competition is known to influence the evolution of male reproductive proteins in mammals. The relationship between sperm competition and regulatory evolution, however, remains to be explored. Protamines and transition nuclear proteins are involved in the condensation of sperm chromatin and are expected to affect the shape of the sperm head. A hydrodynamically efficient head allows for fast swimming velocity and, therefore, more competitive sperm. Previous comparative studies in rodents have documented a significant association between the level of sperm competition (as measured by relative testes mass) and DNA sequence evolution in both the coding and promoter sequences of protamine 2. Here, we investigate the influence of sexual selection on protamine and transition nuclear protein mRNA expression in the testes of eight mouse species that differ widely in levels of sperm competition. We also examined the relationship between relative gene expression levels and sperm head shape, assessed using geometric morphometrics. We found that species with higher levels of sperm competition express less protamine 2 in relation to protamine 1 and transition nuclear proteins. Moreover, there was a significant association between relative protamine 2 expression and sperm head shape. Reduction in the relative abundance of protamine 2 may increase the competitive ability of sperm in mice, possibly by affecting sperm head shape. Changes in gene regulatory sequences thus seem to be the basis of the evolutionary response to sexual selection in these proteins.  相似文献   

7.
8.
Selective pressure arising from sperm competition has been predicted to influence evolutionary and behavioural adjustment of ejaculate investment, but also may influence developmental adjustment of ejaculate investment. Immature males able to target resources strategically based on the competitive environment they will experience when they become sexually mature should be at a selective advantage. In our study we investigated how the presence of potential competitors or mates affects ejaculate and testes investment during development in the cockroach Nauphoeta cinerea, a species where males control female remating via their ejaculate size (large spermatophores prevent females from remating and therefore function to avoid sperm competition for males) and females store sperm. Our aim was to determine whether the social environment influences developmental adjustment of ejaculate investment and the relative importance of ejaculate components with different functions; avoidance of or engagement in sperm competition. We conclude that the social environment can influence developmental and behavioural flexibility in specific ejaculate components that may function to avoid or engage in sperm competition.  相似文献   

9.
Intrasexual selection and testis size in strepsirhine primates   总被引:4,自引:0,他引:4  
The main objective of this study was to investigate two predictionsof sexual selection theory concerning interspecific variationin testis size among strepsirhine primates (Lemuriformes andLorisiformes). First, the unique evolutionary history of lemursprovides an opportunity for an independent test of the predictionsof sperm competition theory regarding the relationship betweenmating system and relative testis size. Second, I examined theevolutionary relationship between the morphological correlatesof pre- and postcopulatory competition (i.e., between sexualdimorphism and testis size) because polygamous lemurs, in contrastto other polygamous primates, lack sexual dimorphism. Basedon measurements from 174 captive strepsirhines from 24 species,I found that multi-male species had significantly larger testesthan pair-living ones, but that they did not differ significantlyfrom solitary species. This result deviates from theoreticalexpectations, but may be the result of yet-unknown heterogeneityin mechanisms of male-male competition in both multi-male andsolitary species. There was no difference in relative testissize between nonmonogamous lemurs and lorises, indicating thatpresumably lower levels of precopulatory competition are notnecessarily compensated by more intense sperm competition. Bodysize and phylogenetic effects were also found to considerablyaffect interspecific variability in testis size. Analyses ofindependent contrasts revealed that evolutionary changes inmating system, testis size, sexual size, and canine dimorphismwere not, or only weakly, associated in this monophyletic groupof primates. Additional comprehensive comparative studies ofsexual dimorphism, testis size, mating system, and copulatorybehavior in these and other taxa are indicated to illuminategeneral patterns and causes of covariation among these traits  相似文献   

10.
When females mate with multiple partners within a single reproductive cycle, sperm from rival males may compete for fertilization of a limited number of ova, and females may bias the fertilization of their ova by particular sperm. Over evolutionary timescales, these two forms of selection shape both male and female reproductive physiology when females mate multiply, yet in monogamous systems, post-copulatory sexual selection is weak or absent. Here, we examine how divergent mating strategies within a genus of closely related mice, Peromyscus, have shaped the evolution of reproductive traits. We show that in promiscuous species, males exhibit traits associated with increased sperm production and sperm swimming performance, and females exhibit traits that are predicted to limit sperm access to their ova including increased oviduct length and a larger cumulus cell mass surrounding the ova, compared to monogamous species. Importantly, we found that across species, oviduct length and cumulus cell density are significantly correlated with sperm velocity, but not sperm count or relative testes size, suggesting that these female traits may have coevolved with increased sperm quality rather than quantity. Taken together, our results highlight how male and female traits evolve in concert and respond to changes in the level of post-copulatory sexual selection.  相似文献   

11.
The hypothesis that sperm competition should favour increases in sperm size, because it results in faster swimming speeds, has received support from studies on many taxa, but remains contentious for mammals. We suggest that this may be because mammalian lineages respond differently to sexual selection, owing to major differences in body size, which are associated with differences in mass-specific metabolic rate. Recent evidence suggests that cellular metabolic rate also scales with body size, so that small mammals have cells that process energy and resources from the environment at a faster rate. We develop the 'metabolic rate constraint hypothesis' which proposes that low mass-specific metabolic rate among large mammals may limit their ability to respond to sexual selection by increasing sperm size, while this constraint does not exist among small mammals. Here we show that among rodents, which have high mass-specific metabolic rates, sperm size increases under sperm competition, reaching the longest sperm sizes found in eutherian mammals. By contrast, mammalian lineages with large body sizes have small sperm, and while metabolic rate (corrected for body size) influences sperm size, sperm competition levels do not. When all eutherian mammals are analysed jointly, our results suggest that as mass-specific metabolic rate increases, so does maximum sperm size. In addition, species with low mass-specific metabolic rates produce uniformly small sperm, while species with high mass-specific metabolic rates produce a wide range of sperm sizes. These findings support the hypothesis that mass-specific metabolic rates determine the budget available for sperm production: at high levels, sperm size increases in response to sexual selection, while low levels constrain the ability to respond to sexual selection by increasing sperm size. Thus, adaptive and costly traits, such as sperm size, may only evolve under sexual selection when metabolic rate does not constrain cellular budgets.  相似文献   

12.
Abstract. Imagoes of the dragonfly Coenagrion puella are parasitized frequently by ectoparasitic water mites. In an experimental study of the parasite load we examined the influence of parasite burden on host sperm volume. Infection with ectoparasitic water mites did not affect sperm volume in the seminal vesicle (ejaculate volume). It is concluded that water mite parasitism does not affect male fitness in C. puella by reducing sperm production.  相似文献   

13.
Sperm competition was identified in 1970 as a pervasive selective force in post‐copulatory sexual selection that occurs when the ejaculates of different males compete to fertilise a given set of ova. Since then, sperm competition has been much studied both empirically and theoretically. Because sperm competition often favours large ejaculates, an important challenge has been to understand the evolution of strategies through which males invest in sperm production and economise sperm allocation to maximise reproductive success under competitive conditions. Sperm competition mechanisms vary greatly, depending on many factors including the level of sperm competition, space constraints in the sperm competition arena, male mating roles, and female influences on sperm utilisation. Consequently, theoretical models of ejaculate economics are complex and varied, often with apparently conflicting predictions. The goal of this review is to synthesise the theoretical basis of ejaculate economics under sperm competition, aiming to provide empiricists with categorised model assumptions and predictions. We show that apparent contradictions between older and newer models can often be reconciled and there is considerable consensus in the predictions generated by different models. We also discuss qualitative empirical support for some of these predictions, and detail quantitative matches between predictions and observations that exist in the yellow dung fly. We argue that ejaculate economic theory represents a powerful heuristic to explain the diversity in ejaculate traits at multiple levels: across species, across males and within individual males. Future progress requires greater understanding of sperm competition mechanisms, quantification of trade‐offs between ejaculate allocation and numbers of matings gained, further knowledge of mechanisms of female sperm selection and their associated costs, further investigation of non‐sperm ejaculate effects, and theoretical integration of pre‐ and post‐copulatory episodes of sexual selection.  相似文献   

14.
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50‐fold range of sperm‐cell volumes across the genus have sperm capable of comprising up to 5% of egg‐cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter‐ and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.  相似文献   

15.
The emergent field of evolutionary biology that studies disparities between the evolutionary interests of alleles expressed in the two sexes, or sexual conflict, promises to offer novel insights into male-female coevolution and speciation. Our theoretical understanding of basic concepts is, however, still incomplete. In a recent perspective paper, Pizzari and Snook provided a framework for understanding sexually antagonistic coevolution and for distinguishing this process from other models of male-female coevolution and suggested an experimental protocol to test for sexually antagonistic coevolution. Here, I show that the framework is flawed, primarily because it is built upon the mistaken assumption that male and female fitness can evolve independently. Further, while the empirical strategy advocated has indeed offered important insights in the past, it does not allow unambiguous discrimination between competing hypotheses.  相似文献   

16.
Post‐copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post‐copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter‐ and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.  相似文献   

17.
We review possible effects of sexual selection upon sperm morphology, and sexual skin morphology, in primates. Comparative morphometric studies, involving 31 species representing 21 primate genera, revealed a positive relationship between volume of the sperm midpiece, occurrences of multiple partner matings by females, and large relative testes sizes, which indicate sperm competition. The midpiece houses the mitochondria required to power sperm motility. Hence, sperm competition may have influenced the evolution of increased mitochondrial loading in species where females mate with multiple partners during the fertile period. Females of some Old World monkey species and female chimpanzees exhibit large estrogen-dependent sexual skin swellings during the follicular phase of the menstrual cycle. Studies of mandrills support the conclusion that swellings act primarily as sexually attractive, graded signals and that swelling size may indicate current reproductive quality. Measurements of the genitalia in chimpanzees indicate a secondary function for female swellings. The swelling increases the operating depth of the female's vagina by 50% during the fertile phase of her cycle. Males have evolved long, filiform penes capable of placing sperm close to the os cervix during competitive multipartner matings. This may exemplify how morphologic specializations in females can influence the coevolution of advantageous genitalic specializations in males: the phenomenon that Eberhard (1985) dubbed cryptic female choice.  相似文献   

18.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

19.
Sperm competition is taxonomically widespread in animals and is usually associated with large sperm production, being the number of sperm in the competing pool the prime predictor of fertilization success. Despite the strong postcopulatory selection acting directionally on sperm production, its genetic variance is often very high. This can be explained by trade‐offs between sperm production and traits associated with mate acquisition or survival, that may contribute to generate an overall stabilizing selection. To investigate this hypothesis, we first artificially selected male guppies (Poecilia reticulata) for high and low sperm production for three generations, while simultaneously removing sexual selection. Then, we interrupted artificial selection and restored sexual selection. Sperm production responded to divergent selection in one generation, and when we restored sexual selection, both high and low lines converged back to the mean sperm production of the original population within two generations, indicating that sperm number is subject to strong stabilizing total sexual selection (i.e., selection acting simultaneously on all traits associated with reproductive success). We discuss the possible mechanisms responsible for the maintenance of high genetic variability in sperm production despite strong selection acting on it.  相似文献   

20.
Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land‐dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis that seems to serve no other function except to anchor muscles that maneuver the penis. Here, we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: (1) males from species with relatively intense sexual selection (inferred by relative testes size) tend to evolve larger penises and pelvic bones compared to their body length, and (2) pelvic bone shape has diverged more in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior‐most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号