首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.  相似文献   

2.
The medaka Oryzias latipes and its two sister species, O. curvinotus and O. luzonensis, possess an XX-XY sex-determination system. The medaka sex-determining gene DMY has been identified on the orthologous Y chromosome [O. latipes linkage group 1 (LG1)] of O. curvinotus. However, DMY has not been discovered in other Oryzias species. These results and molecular phylogeny suggest that DMY was generated recently [approximately 10 million years ago (MYA)] by gene duplication of DMRT1 in a common ancestor of O. latipes and O. curvinotus. We identified seven sex-linked markers from O. luzonensis (sister species of O. curvinotus) and constructed a sex-linkage map. Surprisingly, all seven sex-linked markers were located on an autosomal linkage group (LG12) of O. latipes. As suggested by the phylogenetic tree, the sex chromosomes of O. luzonensis should be "younger" than those of O. latipes. In the lineage leading to O. luzonensis after separation from O. curvinotus approximately 5 MYA, a novel sex-determining gene may have arisen and substituted for DMY. Oryzias species should provide a useful model for evolution of the master sex-determining gene and differentiation of sex chromosomes from autosomes.  相似文献   

3.
The male sex-determining gene, DMY, of the medaka is considered to have arisen via gene duplication of DMRT1. In the medaka, both genes are expressed in Sertoli cell lineage cells, but their temporal expression patterns are quite different. DMY expression starts just before the sex-determining period, whereas DMRT1 expression occurs during the testicular differentiation period. To evaluate the alterations to the expression patterns of the DMRT1 genes after duplication, we analyzed the morphological gonadal sex differentiation processes and expression patterns of DMRT1 in Oryzias luzonensis and Oryzias mekongensis, which are closely related to the medaka but do not have DMY. Male-specific upregulation of DMRT1 in these two species occurred during the testicular differentiation period, similar to the case for DMRT1 in the medaka. These findings suggest that DMY acquired a novel temporal expression pattern after duplication and that this event played a critical role in the evolutionary process of this gene.  相似文献   

4.
5.
Sun H  Kondo R  Shima A  Naruse K  Hori H  Chigusa SI 《Gene》1999,231(1-2):137-145
To obtain an understanding of the origin, diversification and genomic organization of vertebrate olfactory receptor genes, we have newly cloned and characterized putative olfactory receptor genes, mfOR1, mfOR2, mfOR3 and mfOR4 from the genomic DNA of medaka fish (Oryzias latipes). The four sequences contained features commonly seen in known olfactory receptor genes and were phylogenetically most closely related to those of catfish and zebrafish.Among them, mfOR1 and mfOR2 showed the highest amino acid (aa) similarity (93%) and defined a novel olfactory receptor gene family that is most divergent among all other vertebrate olfactory receptor genes. Southern hybridization analyses suggested that mfOR1 and mfOR2 are tightly linked to each other (within 24kb), although suitable marker genes were not available to locate their linkage group. Unlike observation in catfish olfactory receptor sequences, nucleotide (nt) substitutions between the two sequences did not show any evidence of positive natural selection. mfOR3 and mfOR4, however, showed a much lower aa similarity (26%) and were both mapped to a region in the medaka linkage group XX.After including these medaka fish sequences, olfactory receptors of terrestrial and aquatic animals formed significantly different clusters in the phylogenetic tree. Although the member genes of each olfactory receptor gene subfamily are less in fish than that in mammals, fish seem to have maintained more diverse olfactory receptor gene families. Our finding of a novel olfactory receptor gene family in medaka fish may provide a step towards understanding the emergence of the olfactory receptor gene in vertebrates.  相似文献   

6.
7.
The DMRT gene family in amphioxus   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.  相似文献   

10.
11.
12.
13.
奥利亚罗非鱼DMRT1和DMRT4抗体制备及组织表达谱分析   总被引:1,自引:0,他引:1  
DMRT1和DMRT4是DMRT基因家族的成员,该家族成员与果蝇的性别决定基因和线虫性别决定基因一样,所编码的蛋白质都包含一个具有DNA结合能力的保守基序,即DM结构域,并以锌指结构与特异DNA序列相结合,在性别决定和分化发育中起调控作用。采用RT-PCR方法分别从奥利亚罗非鱼卵巢和精巢中扩增克隆出DMRT1和DMRT4全长cDNA片段,构建表达载体,在大肠杆菌中表达了BMP-DMRT4和BMP-DMRT1蛋白。经Xa切割、Amylose-sepharose柱层析纯化后作为抗原免疫新西兰白兔制备了DMRT1和DMRT4多克隆抗体,并进行纯化。对纯化多抗进行Western blot分析,结果表明获得了高特异性的DMRT1和DMRT4抗体。为了观察DMRT1和DMRT4在组织中的表达谱,首先,我们通过实时荧光定量RT-PCR检测雌雄奥利亚罗非鱼多种组织mRNA的表达,仅在卵巢和脑中检测到DMRT4,在精巢中检测到DMRT1;其次,制备了多种组织匀浆蛋白,使用纯化的抗体进行Western blot分析,仅分别在卵巢和精巢中检测到DMRT4和DMRT1蛋白的表达;制备多种奥利亚罗非鱼组织切片,使用纯化的DMRT4和DMRT1多抗进行免疫组织化学分析,发现DMRT4仅在卵巢表达,而DMRT1仅在精巢表达。这些结果有助于阐明DMRT4和DMRT1的功能及在鱼类性别调控中的作用。  相似文献   

14.
DMY, the first sex-determining gene to be described in a nonmammal vertebrate was recently characterized in the medaka fish (Oryzias latipes). It is homologous to DMRT1, a conserved gene of the sex determination cascade in vertebrates. We have checked the near complete genomes of two other percomorph fishes, Tetraodon nigroviridis and Takifugu rubripes, for supplementary homologs of DMRT1 and DMY. We also compared the new gene, DMY, to its homolog DMRT1 from all available vertebrates. Finally, we found evidence for sex-specific expression and alternative splicing of the homolog from T. nigroviridis. Our results show that DMY is a recent duplicate of DMRT1 in the medaka. Its role in sex determination was not acquired through an acceleration of evolutionary rates, but by translocation to the Y chromosome and possibly changes at key positions.  相似文献   

15.
Modern pyrosequencing has the potential to uncover many interesting aspects of genome evolution, even in lineages where genomic resources are scarce. In particular, 454 pyrosequencing of nonmodel species has been used to characterize expressed sequence tags, xenobiotics, gene ontologies, and relative levels of gene expression. Herein, we use pyrosequencing to study the evolution of genes expressed in the gonads of a polyploid fish, the lake sturgeon (Acipenser fulvescens). Using 454 pyrosequencing of transcribed genes, we produced more than 125 MB of sequence data from 473,577 high-quality sequencing reads. Sequences that passed stringent quality control thresholds were assembled into 12,791 male contigs and 32,629 female contigs. Average depth of coverage was 4.2 × for the male assembly and 5.5× for the female assembly. Analytical rarefaction indicates that our assemblies include most of the genes expressed in lake sturgeon gonads. Over 86,700 sequencing reads were assigned gene ontologies, many to general housekeeping genes like protein, RNA, and ion binding genes. We searched specifically for sex determining genes and documented significant sex differences in the expression of two genes involved in animal sex determination, DMRT1 and TRA-1. DMRT1 is the master sex determining gene in birds and in medaka (Oryzias latipes) whereas TRA-1 helps direct sexual differentiation in nematodes. We also searched the lake sturgeon assembly for evidence of xenobiotic organisms that may exist as endosymbionts. Our results suggest that exogenous parasites (trematodes) and pathogens (protozoans) apparently have infected lake sturgeon gonads, and the trematodes have horizontally transferred some genes to the lake sturgeon genome.  相似文献   

16.
17.
A cDNA clone encoding the soluble guanylyl cyclase alpha2 subunit was isolated from medaka fish (Oryzias latipes) and designated as OlGCS-alpha2. The OlGCS-alpha2 cDNA was 3,192 bp in length and the open reading frame (ORF) encodes a protein of 805 amino acids. The deduced amino acid sequence has high similarity to that of the mammalian alpha2 subunit gene except for the N-terminal regulatory domain. The C-terminal 5 amino acids, "RETSL", which have been reported to interact with the post synaptic density protein (PSD)-95 were conserved. An RNase protection assay with adult fish organs showed that OlGCS-alpha2 was expressed mainly in the brain and testis. The complete nucleotide sequence (about 41 kbp) of the OlGCS-alpha2 genomic DNA clone isolated from a medaka fish BAC library indicated that the OlGCS-alpha2 gene consisted of 9 exons and 8 introns. The 5'-flanking region and larger introns, such as introns 1, 4, and 7, contained the several fragments conserved in the nucleotide sequences of Rex6 (non-long terminal repeat retrotransposon), MHC class I genomic region, and OlGC1, the medaka fish homolog of the mammalian guanylyl cyclase B gene. Linkage analysis on the medaka fish chromosome demonstrated that the OlGCS-alpha2 gene was mapped to LG13; this mapping position was different from those for the OlGCS-alpha1 and OlGCS-beta1 genes (LG1).  相似文献   

18.
Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17.  相似文献   

19.
脊椎动物性别决定和分化的分子机制研究进展   总被引:8,自引:1,他引:8  
哺乳类性别决定是多种转录因子和生长因子相继表达和相互调控的结果。SRY的表达启动雄性通路并诱导下游雄性特异基因SOX9、AMH等的表达。FOXL2在雌性未分化性腺表达,WNT-4和DAX1也在雌性性别决定或分化时期表达,表明雌性通路也是受特定基因调控的,而并非“默认通路”。鸟类的性别也是由遗传基因决定的,EFT1(雌性)和DMRT1(雄性)可能是性别决定候选基因。爬行类为温度性别决定的典型,温度可能通过调节雌激素水平和控制性别特异遗传基因表达决定性别。大部分两栖类性别受环境因素影响,但发现DMRT1和DAX1可能与其精巢发育有关。鱼类性别决定和分化方式差异很大,多种因素(遗传基因、环境因素、类固醇激素等)参与了这一过程。从青Q鳉Y染色体定位克隆的DMY,被认为是第一个非哺乳类脊椎动物雄性性别决定基因。所有这些表明脊椎动物性别决定和分化机制是多样化的。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号