首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genomic alteration is a common phenomenon associated with plant tissue culture, which often encompasses genetic changes and epigenetic modifications (e.g. cytosine methylation). Here, we studied genomic alteration in maize by assessing calli and regenerated plants derived from three inbred lines (M17, J7 and JC) and two pairs of reciprocal F1 hybrids (pair I: M17/J7 and J7/M17 and pair II: M17/JC and JC/M17). By employing two molecular markers, the amplified fragment length polymorphism and methylation‐sensitive amplified polymorphism, we found that both types of genomic alterations occurred in calli and regenerated plants of all the studied maize inbred lines and F1 hybrids, but the extent and pattern of changes varied substantially across the genotypes. Among the three inbred lines, M17 showed markedly higher frequencies of both genetic (from 2.1% to 3.8%) and methylation alterations (from 6.5% to 9.9%, by adding up the various patterns) than the other two lines which showed similar frequencies for both types of alterations (genetic: 0.5–1.8%, methylation: 2.1–3.7%). Of the two F1 hybrid pairs, while pair I showed genetic variation frequencies similar to that of the inbred parent with lower changing frequency and pair II was intermediate of those of the parents, both pairs showed frequencies of methylation alteration more or less intermediate of those of their inbred parental lines. Parent‐of‐origin effects in both genetic and methylation changes were detected in only one of the hybrid pairs (primarily pair II) for a given changing pattern. Statistical testing confirmed the genotypic difference in both genetic and methylation (hypomethylation) alterations among the regenerants. Taken together, it could be concluded that the frequency and pattern of both genetic and cytosine methylation alterations in maize tissue culture were largely genetic context‐dependent traits, but stochasticity also played an important part. F1 hybrids were not significantly more stable than their inbred parental lines under tissue culture conditions.  相似文献   

3.

Background

It is widely accepted that interspecific hybridization may induce genomic instability in the resultant hybrids. However, few studies have been performed on the genomic analysis of homoploid hybrids and introgression lines. We have reported previously that by introgressive hybridization, a set of introgression lines between rice (Oryza sativa L.) and wild rice (Zizania latifolia Griseb.) was successfully generated, and which have led to the release of several cultivars.

Methodology

Using 96 microsatellite markers located in the nuclear and organelle genomes of rice, we investigated microsatellite stability in three typical introgression lines. Expression of a set of mismatch repair (MMR) genes and microsatellite-containing genes was also analyzed.

Results/Conclusions

Compared with the recipient rice cultivar (Matsumae), 55 of the 96 microsatellite loci revealed variation in one or more of the introgression lines, and 58.2% of the altered alleles were shared by at least two lines, indicating that most of the alterations had occurred in the early stages of introgression before their further differentiation. 73.9% of the non-shared variations were detected only in one introgression line, i.e. RZ2. Sequence alignment showed that the variations included substitutions and indels that occurred both within the repeat tracts and in the flanking regions. Interestingly, expression of a set of MMR genes altered dramatically in the introgression lines relative to their rice parent, suggesting participation of the MMR system in the generation of microsatellite variants. Some of the altered microsatellite loci are concordant with changed expression of the genes harboring them, suggesting their possible cis-regulatory roles in controlling gene expression. Because these genes bear meaningful homology to known-functional proteins, we conclude that the introgression-induced extensive variation of microsatellites may have contributed to the novel phenotypes in the introgression lines.  相似文献   

4.
Calli were induced from the leaves, young inflorescences and mature embryos of five allooctoploid hybrids (2n = 56) between Triticurn aestivum × Agropyron intermediurn. Somaclones (regenerated plants) were obtained and 37.5 % of them showed genetic variation. Among the variational somaclones high rate of varied regenerated plants were morphologically similar to wheat and some aneuploid plants were also observed. On the other hand, variations of chromosomal structure such as rearrangement, crossover, translocation, breakage and fusion of chromosomes were detected in calli and pollen mother cell of several regenerated plants. So. somaclone variations of these hybrids could be used in transformation of chromosomal genes. The process of forming green spots in differentiation of callus was also observed. For the first time, the two types of green spots, bud green spot and root green spot, were proposed and the difference between them was described.  相似文献   

5.
Summary A diallel study involving reciprocal crosses of four genotypes (IR8, 36, 54, and 64) was carried out to understand the genetic mechanism of plant regeneration from immature embryo-calli in rice. Regeneration frequency (% of calli that produced plants) varied from a high of 86% for IR54 to a low of 0% for IR36, while regenerated plants per embryo numbered from 0 to 7 when these same IR lines and the F1 hybrids were compared. Combining ability analysis revealed that both nuclear (with both additive and dominant effects) and cytoplasmic genes are important in controlling regeneration in rice. Parental lines and F1 hybrids with high ability to regenerate were identified.  相似文献   

6.
Jin S  Mushke R  Zhu H  Tu L  Lin Z  Zhang Y  Zhang X 《Plant cell reports》2008,27(8):1303-1316
Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), chromosomal number counting, and flow cytometric analysis. The roles of RAPD and SSR markers in detecting somaclonal variation of cotton (Gossypium hirsutum L.) were evaluated. Two cluster analyses were performed to express, in the form of dendrograms, the relationships among the hormone combinations and the genetic variability. Both DNA-based techniques were able to amplify all of the cell clones and regenerated plantlets genomes and relative higher genetic variation could be detected in the culture type with 2, 4-D and kinetin hormone combination. The result suggested that 2, 4-D and kinetin hormone combination could induce relative high somaclonal variation and RAPD and SSR markers are useful in detecting somaclonal variation of regenerated cotton plants via somatic embryogenesis. Chromosome number counting and flow cytometry analysis revealed that the number of chromosomes and ploidy levels were nearly stable in all regenerated plants except two regenerated plantlets (lost 4 and 5 chromosomes, respectively) which meant that cytological changes were not correlated with the frequency of RAPD and SSR polymorphisms. This result also might mean that the cell lines with variation of chromosome numbers were difficult to regenerate plants.  相似文献   

7.
Li C  Xia G  Xiang F  Zhou C  Cheng A 《Plant cell reports》2004,23(7):461-467
Two types of protoplasts of wheat (Triticum aestivum L. cv. Jinan 177) were used in fusion experiments—cha9, with a high division frequency, and 176, with a high regeneration frequency. The fusion combination of either cha9 or 176 protoplasts with Russian wildrye protoplasts failed to produce regenerated calli. When a mixture of cha9 and 176 protoplasts were fused with those of Russian wildrye, 14 fusion-derived calli were produced, of which seven differentiated into green plants and two differentiated into albinos. The morphology of all hybrid plants strongly resembled that of the parental wheat type. The hybrid nature of the cell lines was confirmed by cytological, isozyme, random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) analyses. GISH analysis revealed that only chromosome fragments of Russian wildrye were transferred to the wheat chromosomes of hybrid calli and plants. Simple sequence repeat (SSR) analysis of the chloroplast genome of the hybrids with seven pairs of wheat-specific chloroplast microsatellite primers indicated that all of the cell lines had band patterns identical to wheat. Our results show that highly asymmetric somatic hybrid calli and plants can be produced via symmetric fusion in a triparental fusion system. The dominant effect of two wheat cell lines on the exclusion of Russian wildrye chromosomes is discussed.Abbreviations GISH Genome in situ hybridization - RAPD Random amplified polymorphic DNA - SCF Small chromosome fragment - SSR Simple sequence repeat  相似文献   

8.
The phenomenon of heterosis describes the increased agronomic performance of heterozygous F(1) plants compared to their homozygous parental inbred plants. Heterosis is manifested during the early stages of root development in maize. The goal of this study was to identify nonadditive gene expression in primary roots of maize hybrids compared to the average expression levels of their parental inbred lines. To achieve this goal a two-step strategy was used. First, a microarray preselection of nonadditively expressed candidate genes was performed. Subsequently, gene expression levels in a subset of genes were determined via high-throughput quantitative real-time (qRT)-PCR experiments. Initial microarray experiments identified 1941 distinct microarray features that displayed nonadditive gene expression in at least 1 of the 12 analyzed hybrids compared to the midparent value of their parental inbred lines. Most nonadditively expressed genes were expressed between the parental values (>89%). Comparison of these 1941 genes with nonadditively expressed genes identified in maize shoot apical meristems via the same experimental procedure in the same genotypes revealed significantly less overlap than expected by pure chance. This finding suggests organ-specific patterns of nonadditively expressed genes. qRT-PCR analyses of 64 of the 1941 genes in four different hybrids revealed conserved patterns of nonadditively expressed genes in different hybrids. Subsequently, 22 of the 64 genes that displayed nonadditive expression in all four hybrids were analyzed in 12 hybrids that were generated from four inbred lines. Among those genes a superoxide dismutase 2 was expressed significantly above the midparent value in all 12 hybrids and might thus play a protective role in heterosis-related antioxidative defense in the primary root of maize hybrids. The findings of this study are consistent with the hypothesis that both global expression trends and the consistent differential expression of specific genes contribute to the organ-specific manifestation of heterosis.  相似文献   

9.
10.
Agrobacterium tumefaciens strain LBA4404 carrying plasmid pTOK233 encoding the hygromycin resistance (hph) and beta-glucuronidase (uidA) genes has been used to transform two agronomic grass species: tall fescue (Festuca arundinacea) and Italian ryegrass (Lolium multiflorum). Embryogenic cell suspension colonies or young embryogenic calli were co-cultured with Agrobacterium in the presence of acetosyringone. Colonies were grown under hygromycin selection with cefotaxime and surviving colonies plated on embryogenesis media. Eight Lolium (six independent lines) and two Festuca plants (independent lines) were regenerated and established in soil. All plants were hygromycin-resistant, but histochemical determination of GUS activity showed that only one Festuca plant and one Lolium plant expressed GUS. Three GUS-negative transgenic L. multiflorum and the two F. arundinacea plants were vernalised and allowed to flower. All three Lolium plants were male- and female-fertile, but the Festuca plants failed to produce seed. Progeny analysis of L. multiflorum showed a 24-68% inheritance of the hph and uidA genes in the three lines with no significant difference between paternal and maternal gene transmission. However, significant differences were noted between the paternal and maternal expression of hygromycin resistance.  相似文献   

11.
Summary We have previously described substantial variation in the level of expression of two linked genes which were introduced into transgenic petunia plants using Agrobacterium tumefaciens. These genes were (i) nopaline synthase (nos) and (ii) a chimeric chlorophyll a/b binding protein/octopine synthase (cab/ocs) gene. In this report we analyze the relationship between the level of expression of the introduced genes and T-DNA structure and copy number in 40 transgenic petunia plants derived from 26 transformed calli. Multiple shoots were regenerated from 8 of these calli and in only 6 cases were multiple regenerated shoots from each callus genotypically identical to each other. Many genotypes showed no nos gene expression (22/28). Most of the plants (16/22) which lacked nos gene expression did contain nos-encoding DNA with the expected restriction enzyme map. Similarly, amongst the genotypes showing no cab/ocs gene expression, the majority (11/28) did not show any alterations in restriction fragments corresponding to the expected cab/ocs coding sequences (10/11). Approximately half of the plants carried multiple copies of T-DNA in inverted repeats about the left or right T-DNA boundaries. No positive correlation was observed between the copy number of the introduced DNA and the level of expression of the introduced genes. However, plants with high copy number complex insertions composed of multiple inverted repeats in linear arrays usually showed low levels of expression of the introduced genes.  相似文献   

12.
Stupar RM  Springer NM 《Genetics》2006,173(4):2199-2210
Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.  相似文献   

13.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

14.
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model ??diploid embryogenic callus protoplast?+?diploid mesophyll-derived protoplast??. Protoplasts were isolated from embryogenic calli of ??Pera?? and ??Westin?? sweet orange cultivars (Citrus sinensis) and from young leaves of ??Fremont??, Nules??, and ??Thomas?? mandarins (C. reticulata), and ??Nova?? tangelo [C. reticulata?×?(C. paradisi?×?C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when ??Pera?? sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of ??Pera?? sweet orange?+???Fremont?? mandarin, 3 ??Pera?? sweet orange?+???Nules?? mandarin, and 2 ??Pera?? sweet orange?+???Nova?? tangelo, and all the diploid regenerated plants showed the ??Pera?? sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96?h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.  相似文献   

15.
Evolution of duplicate gene expression in polyploid and hybrid plants   总被引:9,自引:0,他引:9  
Allopolyploidy is a prominent mode of speciation in flowering plants. On allopolyploidy, genomic changes can take place, including chromosomal rearrangement and changes in gene expression; these processes continue over evolutionary time. Recent studies of gene expression in polyploid and hybrid plants, reviewed here, have examined expression in natural polyploids and synthetic neopolyploids as well as in diploid and F(1) hybrids. Considerable changes in gene expression have been observed in allopolyploids, including up- or downregulation of expression in the polyploids compared with their parents, unequal expression of duplicated genes, and silencing of one copy. Genes in a variety of functional categories show altered expression, and the patterns vary considerably by gene. Some changes seem to be stochastic, whereas others are repeatable. Gene expression changes can be organ specific. Reciprocal silencing of duplicates in different organs has been observed, suggesting subfunctionalization and long-term retention of duplicates. It has become clear that hybridization has a much greater effect than chromosome doubling on gene expression in allopolyploids. Diploid and triploid F(1) hybrids can show alterations of expression levels compared with their parents. Parent-of-origin effects on gene expression have been examined, and loss of gene imprinting has been shown. Some gene expression changes in polyploids and hybrids can be correlated with phenotypic effects. Demonstrated mechanisms of gene expression changes include DNA methylation, histone modifications, and antisense RNA. Several hypotheses have been proposed for why gene expression is altered in allopolyploids and hybrids.  相似文献   

16.
17.
The aim of this work was to improve existing transformation protocols and to transform specific genotypes of Paspalum notatum (bahiagrass) for functional analyses of candidate genes involved in reproduction. Three different explants were assayed for in vitro plant regeneration: mature seeds, mature embryos, and shoot meristems. Plant regeneration was achieved with all explant types, but mature seeds produced the optimal rate (78.0%) and were easiest to manipulate. A method based on serial re-induction of calli from meristems of the regenerated lines was also developed, which could be useful in plant breeding strategies pursuing somaclonal variation. Transient transformation experiments were performed on calli obtained from mature seeds using a compressed helium gene gun. Transient transformation constructs included anthocyanin-synthesis genes cloned under the CAMV 35S promoter and an enhanced green fluorescent protein gene (egfp) driven by the rice actin1 (act1) promoter. Selection curves for ammonium glufosinate were developed in order to determine the optimal selective pressure for stable transformation (1.0 mg/L). Stable co-transformation experiments were carried out with two different constructs containing: (1) the reporter egfp gene cloned under the rice act1 promoter and (2) the selector bar gene driven by the ubiquitin promoter. A total of 27 (64.2%) transgenic plants out of 42 resistant plants analyzed were obtained. The presence of the transgenes in regenerated plants was confirmed by polymerase chain reaction and DNA gel blot analysis. Gene expression was demonstrated by eGFP fluorescence detection and in vivo assays for ammonium glufosinate tolerance. This platform is being used to generate transgenic plants of P. notatum to analyze the function of apomixis-associated candidate genes.  相似文献   

18.
小麦愈伤组织及再生植株的染色体变异   总被引:20,自引:0,他引:20  
李士生  张玉玲 《遗传学报》1991,18(4):332-338
对培养在含有不同附加成分的MS培养基上的小麦愈伤组织染色体进行了跟踪研究。结果表明,在整个培养过程中各培养基上愈伤组织都有一定程度的染色体变异。在培养初期,高浓度2,4-D可增加愈伤组织中的染色体变异率,AgNO_3可降低染色体变异率。6-BA对培养初期愈伤组织染色体变异率没有显著影响。但高浓度6-BA可加大长期培养愈伤组织中的超倍体细胞频率。蔗糖浓度对最初9代愈伤组织染色体变异率无显著影响。但之后,低浓度蔗糖培养基上亚倍体细胞频率明显减小。随着培养时间的延长,各培养基上愈伤组织中正常二倍体细胞的频率都有逐渐上升的趋势。在再生植株中,大部分核型正常,只有少数植株具有染色体数目或结构变异。有些核型正常植株也有表型变异。  相似文献   

19.
Understanding dynamics and inheritance of DNA methylation represents important facets for elucidating epigenetic paradigms in plant development and evolution. Using four sets of sorghum (Sorghum bicolor L.) inter-strain hybrids and their inbred parents, the developmental stability and inheritance of cytosine methylation in two tissues, leaf and endosperm, by MSAP analysis were investigated. It was found that in all lines (inbred and hybrid) studied, endosperm exhibited a markedly reduced level of full methylation of the external cytosine or both cytosines at the CCGG sites relative to leaf, which caused a variable reduction in the estimated total methylation level in endosperm by 6.89–19.69% (11.47% on average). For both tissues, a great majority of cytosine methylation profiles transmitted to F1 hybrids, however, from 1.69 to 3.22% of the profiles showed altered patterns in hybrids. Both inherited and altered methylation profiles can be divided into distinct groups, and their frequencies are variable among the cross-combinations, and between the two tissues. The variations in methylation level and pattern detected in the hybrids were not caused by parental heterozygosity, and they could be either non-random or stochastic among hybrid individuals. Homology analysis of isolated bands that showed endosperm-specific hypomethylation or variation in hybrids indicated that diverse sequences were involved, including known-function cellular genes and mobile elements. RT-PCR analysis of six genes representing endosperm-specific hypomethylation in MSAP profiles indicated that all showed higher expression in endosperm than in leaf, suggesting involvement of methylation state in regulating tissue-specific or tissue-biased expression in sorghum. Analysis on leaf-RNA from 5-azacytidine-treated plants further corroborated this possibility. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary Somatic fusions between the cultivated potato Solanum tuberosum and the wild species S. circaeifolium subsp. circaeifolium Bitter were produced in order to incorporate desirable traits into the potato gene pool. Selection of the putative hybrids was based on a difference in callus morphology between the hybrids and their parents, with the hybrids showing typical purple-colored cells in otherwise green calli. In all, 17 individual calli regenerated to plants. Of the nine plants that could be transferred to the greenhouse, eight showed a hybrid and one a parental morphology. Restriction fragment length polymorphism (RFLP) analysis confirmed the hybrid character in the former group. Chloroplast counts in stomatal guard cells and flow cytometric determination of nuclear DNA content showed that four hybrid plants were tetraploid (4x), one was mixoploid (5x–8x), and the others were polyploid (6x; 8x). Three out of four tetraploid hybrids were found to be fully resistant to Phytophthora infestans, and all four hybrids were resistant to Globodera pallida pathotypes Pa2 and Pa3. It was further observed that the type and amount of steroidal glycoalkaloids varied among the tubers of the parents and the hybrids. Using the hybrids as female parents in crosses with S. tuberosum, viable seeds could be obtained. This demonstrates the potential of these hybrids in practical plant breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号