首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Chinese jujube (Ziziphus jujuba), an economically important species in the Rhamnaceae family, is a popular fruit tree in Asia. Here, we surveyed and characterized simple sequence repeats (SSRs) in the jujube genome. A total of 436,676 SSR loci were identified, with an average distance of 0.93 Kb between the loci. A large proportion of the SSRs included mononucleotide, dinucleotide and trinucleotide repeat motifs, which accounted for 64.87%, 24.40%, and 8.74% of all repeats, respectively. Among the mononucleotide repeats, A/T was the most common, whereas AT/TA was the most common dinucleotide repeat. A total of 30,565 primer pairs were successfully designed and screened using a series of criteria. Moreover, 725 of 1,000 randomly selected primer pairs were effective among 6 cultivars, and 511 of these primer pairs were polymorphic. Sequencing the amplicons of two SSRs across three jujube cultivars revealed variations in the repeats. The transferability of jujube SSR primers proved that 35/64 SSRs could be transferred across family boundary. Using jujube SSR primers, clustering analysis results from 15 species were highly consistent with the Angiosperm Phylogeny Group (APGIII) System. The genome-wide characterization of SSRs in Chinese jujube is very valuable for whole-genome characterization and marker-assisted selection in jujube breeding. In addition, the transferability of jujube SSR primers could provide a solid foundation for their further utilization.  相似文献   

3.
Oil camellia trees are important woody plants for the production of high-quality cooking oil. On the contrary to their economic importance, their genetic and genomic resources are very limited, which greatly hamper the genetic studies on oil camellia trees. Microsatellites or simple sequence repeats (SSRs) have great value in many aspects of genetic analyses due to their high polymorphism and codominant inheritance. In this study, we report the large-scale development and characterization of SSR markers derived from genomic sequences of Camellia chekiangoleosa by high-throughput pyrosequencing technology. A total of 1,091,393 genomic shotgun reads were generated using Roche 454 FLX sequencer, the average read length was 319 bp, and the total sequence throughput was 347.9 Mb. These sequences were assembled into 35,315 contigs with total length of 14.8 Mb and the N50 contig size of 770 bp. By analyzing with microsatellite (MISA), a total of 5,844 perfect microsatellites were detected from the assembled sequences. Among them, tetranucleotide repeats were found to be the most frequent microsatellites in the genome of C. chekiangoleosa, and all the dominant repeat motifs for different types of SSRs were detected to be rich in A/T. Experimental analysis with 900 SSR primer pairs revealed that 66 % of them succeeded in PCR amplification. Further investigation with 345 SSR primer pairs showed that a relatively high percentage of primers amplified polymorphic loci (31.9 %). Experimental data also revealed that, overall, long microsatellite repeats (>20 bp) were more variable than the short ones (<20 bp) in the genome of oil camellia tree.  相似文献   

4.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

5.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

6.
Ricinus communis is a versatile industrial oil crop that is cultivated worldwide. Genetic improvement and marker-assisted breeding of castor bean have been slowed owing to the lack of abundant and efficient molecular markers. As co-dominant markers, simple sequence repeats (SSRs) are useful for genetic evaluation and molecular breeding. The recently released whole-genome sequence of castor bean provides useful genomic resources for developing markers on a genome-wide scale. In the present study, the distribution and frequency of microsatellites in the castor bean genome were characterised and numerous SSR markers were developed using genomic data mining. In total, 18,647 SSR loci at a density of one SSR per 18.89 Kb in the castor bean genome sequence (representing approximately 352.27 Mb) were identified. Dinucleotide repeats were the most frequently observed microsatellites, although the AAT repeat motif was also prevalent. Using six cultivars as screening samples, 670 polymorphic SSR markers from 1,435 primer pairs (46.7 %) were developed. Trinucleotide motif loci contained a higher proportion of polymorphisms (48.5 %) than dinucleotide motif loci (39.2 %). The polymorphism level in the SSR loci was positively correlated with the increasing number of repeat units in the microsatellites. The phylogenetic relationship among 32 varieties was evaluated using the developed SSR markers. Cultivars developed at the same institute clustered together, suggesting that these cultivars have a narrow genetic background. The large number of SSR markers developed in this study will be useful for genetic mapping and for breeding improved castor-oil plants. These markers will also facilitate genetic and genomic studies of Euphorbiaceae.  相似文献   

7.
Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community.  相似文献   

8.
Microsatellites (simple sequence repeats, SSRs) are important genetic markers in tree breeding and conservation. Here we utilized high-throughput 454 sequencing technology to mine microsatellites from masson pine (MP) genomic DNA. First, we analyzed the characteristics of SSRs in all nonredundant MP reads (genome survey sequences, GSSs) and compared them with loblolly pine (LP) GSSs and BACs (bacterial artificial chromosome clone sequences), and three other nonconiferous species GSSs. Second, a set of MP GSS–SSR primer pairs were designed. There were extremely low overall GSS–SSR densities (28 SSR/Mb) in MP when compared with LP (48 SSR/Mb) and the other species. AT, AAT, AAAT, and AAAAAT were the richest motifs in di-, tri-, tetra-, and hexanucleotides, respectively. Two hundred forty GSS–SSR primer pairs were designed in total, and 20 novel polymorphic markers were identified using three populations (two natural and one clonal seed orchard) as evaluating samples. These markers should be useful for future MP population genetics studies.  相似文献   

9.
Public sequence databases provide a rapid, simple and cost-effective source of microsatellite markers. We analyzed 1,532 bamboo (Phyllostachys pubescens) sequences available in public domain DNA databases, and found 3,241 simple sequence repeat (SSR) loci comprising repeats of two or more nucleotides in 920 genomic survey sequences (GSSs) and 68 cDNA sequences. This corresponded to one SSR per 336 bp of GSS DNA and one SSR per 363 bp of cDNA. The SSRs consisted of 76.6 and 74.5% dinucleotide repeats, 20.0 and 22.3% trinucleotide repeats, and 3.4 and 3.2% higher-number repeats in the GSS DNA and cDNA sequences, respectively. The repeat motif AG/CT (or GA/TC) was the most abundant. Nineteen microsatellite markers were developed from Class I and Class II SSRs, showing that the limited polymorphism in Ph. pubescens cultivars and provenances could be attributed to clonal propagation of the bamboo plant. The transferability of the microsatellites reached 75.3%, and the polymorphism of loci successfully transferred was 66.7% for six additional Phyllostachys species. Microsatellite PBM014 transferred successfully to all six species, showed rich polymorphism, and could serve as species-specific alleles for the identification of Phyllostachys interspecies hybrids.  相似文献   

10.
Highly informative molecular markers, such as simple sequence repeats (SSRs), can greatly accelerate breeding programs. The aim of this study was to develop and characterise a comprehensive set of SSR markers for white clover (Trifolium repens L.), which can be used to tag genes and quantitative trait loci controlling traits of agronomic interest. Sequence analysis of 1123 clones from genomic libraries enriched for (CA) n repeats yielded 793 clones containing SSR loci. The majority of SSRs consisted of perfect dinucleotide repeats, only 7% being trinucleotide repeats. After exclusion of redundant sequences and SSR loci with less than 25 bp of flanking sequence, 397 potentially useful SSRs remained. Primer pairs were designed for 117 SSR loci and PCR products in the expected size range were amplified from 101 loci. These markers were highly polymorphic, 88% detecting polymorphism across seven white clover genotypes with an average allele number of 4.8. Four primer pairs were tested in an F2 population revealing Mendelian segregation. Successful cross-species amplification was achieved in at least one out of eight legume species for 46 of 54 primer pairs. The rate of successful amplification was significantly higher for Trifolium species when compared to species of other genera. The markers developed in this study not only provide valuable tools for molecular breeding of white clover but may also have applications in related taxa. Received: 3 April 2000 / Accepted: 12 May 2000  相似文献   

11.
Data mining of gene sequences available from various projects dealing with the development of expressed sequence tags (ESTs) can contribute to the discovery of new microsatellite markers. Our aim was to develop new microsatellite markers in hop isolated from an enriched cDNA library and from coding GenBank sequences and to test their suitability in hop diversity studies and for construction of a linkage map. In a set of 614 coding GenBank sequences, 72 containing microsatellites were found (11.7%); the most frequent were trinucleotide repeats (54.0%) followed by dinucleotide repeats (34.5%). Additionally, 11 sequences containing microsatellites were isolated from an enriched cDNA library. A total of 34 primer pairs were designed, 29 based on GenBank sequences and five on sequences from the cDNA enriched library. Twenty-seven (79.4%) coding microsatellites were successfully amplified and used in diversity and linkage mapping studies. Eleven primer pairs amplified 12 coding microsatellite loci suitable for mapping and were placed on female and male linkage maps. We were able to extend previous simple sequence repeat (SSR) female, male and integral maps by 38.8, 25.8 and 40.0 cM, respectively. In the diversity study, 36 diverse hop genotypes were analyzed. Twenty-four coding microsatellites were polymorphic, 17 showing co-dominant behavior and 7 primer pairs amplifying three or more bands in some hop genotypes. Altogether, 143 microsatellite DNA fragments were amplified and they revealed a clear separation of hop genotypes according to geographical region, use or breeding history. In addition, a discussion and comparison of results with other plant coding/EST SSR studies is presented. Our results showed that these microsatellite markers can enhance hop diversity and linkage mapping studies and are a comparable marker system to non-coding SSRs.  相似文献   

12.
A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database () to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15 cM.E. Silfverberg-Dilworth and C. L. Matasci contributed equally to this work.  相似文献   

13.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

14.
15.
The simple sequence repeat (SSR) or microsatellite marker is currently the preferred molecular marker due to its highly desirable properties. The aim of this study was to develop and characterize more SSR markers because the number of SSR markers currently available in tomato is very limited. Five hundred DNA sequences of tomato were searched for SSRs and analyzed for the design of PCR primers. Of the 158 pairs of SSR primers screened against a set of 19 diverse tomato cultivars, 129 pairs produced the expected DNA fragments in their PCR products, and 65 of them were polymorphic with the polymorphism information content (PIC) ranging from 0.09 to 0.67. Among the polymorphic loci, 2-6 SSR alleles were detected for each locus with an average of 2.7 alleles per locus; 49.2% of these loci had two alleles and 33.8% had three alleles. The vast majority (93.8%) of the microsatellite loci contained di- or tri-nucleotide repeats and only 6.2% had tetra- and penta-nucleotide repeats. It was also found that TA/AT was the most frequent type of repeat, and the polymorphism information content (PIC) was positively correlated with the number of repeats. The set of 19 tomato cultivars were clustered based on the banding patterns generated by the 65 polymorphic SSR loci. Since the markers developed in this study are primarily from expressed sequences, they can be used not only for molecular mapping, cultivar identification and marker-assisted selection, but for identifying gene-trait relations in tomato.  相似文献   

16.
17.
Jun TH  Michel AP  Mian MA 《Génome》2011,54(5):360-367
Simple sequence repeats (SSRs) or microsatellites are very useful molecular markers, owing to their locus-specific codominant and multiallelic nature, high abundance in the genome, and high rates of transferability across species. The soybean aphid (Aphis glycines Matsumura) has become the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America, since it was first found in the Midwest of the United States in 2000. Biotypes of the soybean aphid capable of colonizing newly developed aphid-resistant soybean cultivars have been recently discovered. Genetic resources, including molecular markers, to study soybean aphids are severely lacking. Recently developed next generation sequencing platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objectives of this study were (i) to develop and characterize genomic SSR markers from soybean aphid genomic sequences generated by next generation sequencing technology and (ii) to evaluate the utility of the SSRs for genetic diversity or relationship analyses. In total 128 SSR primer pairs were designed from sequences generated by Illumina GAII from a reduced representation library of A. glycines. Nearly 94% (120) of the primer pairs amplified SSR alleles of expected size and 24 SSR loci were polymorphic among three aphid samples from three populations. The polymorphic SSRs were successfully used to differentiate among 24 soybean aphids from Ohio and South Dakota. Sequencing of PCR products of two SSR markers from four aphid samples revealed that the allelic polymorphism was due to variation in the SSR repeats among the aphids. These markers should be particularly useful for genetic differentiation among aphids collected from soybean fields at different localities and regions. These SSR markers provide the soybean aphid research community with the first set of PCR-based codominant markers developed from the genomic sequences of A. glycines.  相似文献   

18.
A set of 111,090 barley expressed sequence tags (ESTs) was searched for the presence of microsatellite motifs [simple sequence repeat (SSRs)] and yielded 2,823 non-redundant SSR-containing ESTs (SSR–ESTs). From this, a set of 754 primer pairs was designed of which 525 primer pairs yielded an amplicon and as a result, 185 EST-derived microsatellite loci (EST–SSRs) were placed onto a genetic map of barley. The markers show a uniform distribution along all seven linkage groups ranging from 21 (7H) to 35 (3H) markers. Polymorphism information content values ranged from of 0.24 to 0.78 (average 0.48). To further investigate the physical distribution of the EST–SSRs in the barley genome, a bacterial artificial chromosomes (BAC) library was screened. Out of 129 markers tested, BAC addresses were obtained for 127 EST–SSR markers. Twenty-seven BACs, forming eight contigs, were hit by two or three EST–SSRs each. This unexpectedly high incidence of EST–SSRs physically linked at the sub-megabase level provides additional evidence of an uneven distribution of genes and the segmentation of the barley genome in gene-rich and gene-poor regions.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Primer sequences for developed SSR markers are available upon request from the corresponding author (A. Graner).  相似文献   

19.
Microsatellite loci or simple sequence repeat loci (SSRs) were isolated in alpine larch (Larix lyallii Parl.) and western larch (Larix occidentalis Nutt.). In total, 14 SSR loci were characterized; two [(TCT)4, A7] came from published Larix DNA sequence data, one (CA)17 was obtained from a partial non-enriched alpine larch total genomic DNA library, and the remaining 11 loci were obtained from larch genomic DNAs enriched for (CA)n repeats. The SSR regions in these clones could be divided into three categories: perfect repeat sequences without interruption, imperfect repeat sequences with interruption(s), and compound repeat sequences with adjacent tandem simple dinucleotides. Eight of the 14 loci analyzed were found to be polymorphic and useful markers after silver-staining polyacrylamide gel electrophoresis. In addition, several SSR primers developed for alpine larch were able to successfully amplify polymorphic loci in its related species, western larch, and among other closely related taxa within the Larix genus. The inheritance of microsatellite loci was verified by analysis of haploid megagametophyte and diploid embryo tissues of progeny obtained from controlled crosses between western larch and alpine larch. All microsatellite loci analyzed had alleles that segregated according to expected Mendelian frequencies. Two species-specific markers (UAKLly10a and UAKLla1) allow easy and rapid identification of specific genetic entry of alpine larch and western larch at any stage in the sporophyte phase of the life cycle. Therefore, these markers are efficient in identifying the parental species and to validate controlled crosses between these two closely related species. These results are important in tree improvement programs of alpine larch and western larch aimed at producing genetically improved hybrid stock for reforestation in Western Canada and U.S.A.  相似文献   

20.
Pineapple (Ananas comosus (L.) Merrill) is the second most important tropical fruit in term of international trade. The availability of whole genomic sequences and expressed sequence tags (ESTs) offers an opportunity to identify and characterize microsatellite or simple sequence repeat (SSR) markers in pineapple. A total of 278,245 SSRs and 41,962 SSRs with an overall density of 728.57 SSRs/Mb and 619.37 SSRs/Mb were mined from genomic and ESTs sequences, respectively. 5′-untranslated regions (5′-UTRs) had the greatest amount of SSRs, 3.6–5.2 fold higher SSR density than other regions. For repeat length, 12 bp was the predominant repeat length in both assembled genome and ESTs. Class I SSRs were underrepresented compared with class II SSRs. For motif length, dinucleotide repeats were the most abundant in genomic sequences, whereas trinucleotides were the most common motif in ESTs. Tri- and hexanucleotides of total SSRs were more prevalent in ESTs than in the whole genome. The SSR frequency decreased dramatically as repeat times increased. AT was the most frequent single motif across the entire genome while AG was the most abundant motif in ESTs. Across six examined plant species, the pineapple genome displayed the highest density, substantially more than the second-place cucumber. Annotation and expression analyses were also conducted for genes containing SSRs. This thorough analysis of SSR markers in pineapple provided valuable information on the frequency and distribution of SSRs in the pineapple genome. This genomic resource will expedite genomic research and pineapple improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号