首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C P Govardhan  R F Pratt 《Biochemistry》1987,26(12):3385-3395
Steady-state kinetic parameters have been determined for the hydrolysis of a series of acyclic depsipeptides (ester analogues of acyl-D-alanyl-D-alanine peptides) catalyzed by representative class C (Enterobacter cloacae P99) and class A (Bacillus cereus I, TEM-2, and Staphylococcus aureus PC1) beta-lactamases. The best of these substrates, and the one most used in this work, was m-[[(phenylacetyl)-glycyl]oxy]benzoic acid, whose rates of cleavage could be followed spectrophotometrically. The P99 enzyme also catalyzed the methanolysis of these substrates in aqueous methanol solutions. Quantitative evaluation of the effects of methanol on the kinetics of the competing hydrolysis and methanolysis reactions, and on the product distribution, supports a reaction mechanism involving an acyl-enzyme intermediate whose formation is rate-determining under conditions of substrate saturation. Consideration of the variation of these kinetic parameters with the structure of the depsipeptides and comparison with the analogous parameters for bicyclic beta-lactam substrates suggest that a variety of substrate binding modes exist on this enzyme. The class A enzymes, B. cereus beta-lactamase I and the TEM-2 beta-lactamase, catalyze depsipeptide and benzylpenicillin hydrolyses but not methanolysis. The acyl-enzyme derived from both types of substrate is thus shielded from external nucleophiles; the shielding is therefore not an effect, direct or indirect, of the thiazolidinyl group in the penicilloyl-enzyme. The class A beta-lactamase of the PC1 plasmid of S. aureus is distinctly different from the above two representatives of that class, in that it does catalyze methanolysis of depsipeptides (but not of benzylpenicillin). The methanolysis kinetics suggest that deacylation is rate-determining at saturation, a conclusion supported by the demonstration of an intermediate during the hydrolysis of m-[[(phenylacetyl)glycyl]oxy]benzoate, subsequent to leaving-group departure. The beta-lactamases have thus been shown to catalyze the hydrolysis of specific depsipeptides with comparable facility to that demonstrated by D-alanyl-D-alanine carboxypeptidase/transpeptidases. The former enzymes, however, differ in being unable to cleave the analogous peptides.  相似文献   

2.
There have been several studies indicating that hydrolysis reactions of fatty acid esters catalyzed by lipases proceed through an acyl-enzyme intermediate typical of serine proteases. In particular, one careful kinetic study with the physiologically important enzyme lipoprotein lipase (LPL) is consistent with rate-limiting deacylation of such an intermediate. To observe the spectrum of acyl-enzyme and study the mechanism of LPL-catalyzed hydrolysis of substrate, we have used a variety of furylacryloyl substrates including 1,2-dipalmitoyl-3-[(beta-2-furylacryloyl)triacyl]glyceride (DPFATG) to study the intermediates formed during the hydrolysis reaction catalyzed by the enzyme. After isolation and characterization of the molecular weight of adipose LPL, we determined its extinction coefficient at 280 nm to quantitate the formation of any acyl-enzyme intermediate formed during substrate hydrolysis. We observed an intermediate at low pH during the enzyme-catalyzed hydrolysis of (furylacryloyl)imidazole. This intermediate builds early in the reaction when a substantial amount of substrate has hydrolyzed but no product, furylacrylate, has been formed. The acyl-enzyme has a lambda max = 305 nm and a molar extinction coefficient of 22,600 M-1 cm-1; these parameters are similar to those for furylacryloyl esters including the serine ester. These data provide the first spectral evidence for a serine acyl-enzyme in lipase-catalyzed reactions. The LPL hydrolysis reaction is base catalyzed, exhibiting two pKa values; the more acidic of these is 6.5, consistent with base catalysis by histidine. The biphasic rates for substrate disappearance or product appearance and the absence of leaving group effect indicate that deacylation of intermediate is rate limiting.  相似文献   

3.
Cryoenzymology of beta-lactamases   总被引:1,自引:0,他引:1  
S J Cartwright  S G Waley 《Biochemistry》1987,26(17):5329-5337
The cryoenzymology of several different beta-lactamases has been investigated. Particular attention has been paid to the experimental pitfalls of the technique. These include such factors as false bursts at the start of the reaction, instability of the enzymes during turnover, and Km values so high that little of the enzyme is present as a complex. Many of the difficulties in cryoenzymology stem from the use of organic cryosolvents. A novel "salt" cryosolvent has been tested: ammonium acetate solutions can be used down to about -60 degrees C. The enzymes examined are readily soluble, and stable, in this solvent. Nevertheless, out of 17 beta-lactamase beta-lactam systems, only 4 proved suitable for detailed investigation. In two of these, the hydrolysis of nitrocefin or 7-(thienyl-2-acetamido)-3-[[2-[[4- (dimethylamino)phenyl]azo]pyridinio]-methyl]cephem-4-carboxylic acid (PADAC), by beta-lactamase I from Bacillus cereus, substrate was converted into product at a slow enough rate (at -60 or -55 degrees C, respectively) for it to be possible to do successive scans during the course of the reaction. The spectra were those of substrate and product, and no intermediate was detected. The results argue against the accumulation of intermediate acyl-enzyme. The hydrolysis of PADAC by the P99 beta-lactamase from Enterobacter cloacae again showed spectra characteristic of substrate and product, and there was, moreover, a break in the Arrhenius plot; it is possible that a conformational change is (at least partially) rate-determining. The hydrolysis of dinitrophenylpenicillin by the P99 beta-lactamase did show features suggesting the accumulation of acyl-enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Methanol or ethanol can replace water in the action of certain chromosomal beta-lactamases on benzylpenicillin: the products are alpha-methyl or alpha-ethyl benzylpenicilloate. The beta-lactamases were from a mutant of Pseudomonas aeruginosa 18S that produces the enzyme constitutively [Flett, Curtis & Richmond (1976) J. Bacteriol. 127, 1585-1586; Berks, Redhead & Abraham (1982) J. Gen. Microbiol. 128, 155-159] and from Escherichia coli K12 (the ampC beta-lactamase) [Lindstr?m, Boman & Steele (1970) J. Bacteriol. 101, 218-231]. The variation of the rates of alcoholysis and hydrolysis with concentration of alcohol show that the rate-determining step is breakdown of an intermediate. This intermediate is likely to be the acyl-enzyme. The esters, alpha-methyl or alpha-ethyl benzylpenicilloate, are themselves substrates for the Pseudomonas beta-lactamase, benzylpenicilloic acid being formed. Thus this beta-lactamase can be an esterase. The kinetics for the hydrolysis of cloxacillin by the Pseudomonas beta-lactamase are consistent with the acyl-enzyme, formed by acylation of serine-80, being an intermediate in the overall hydrolysis.  相似文献   

5.
Arginine deiminase (EC 3.5.3.6) catalyzes the hydrolysis of arginine to ammonia and citrulline. This reaction is postulated to occur in three steps: (1) formation of the Michaelis complex, (2) the formation of an amidino-enzyme intermediate and liberation of ammonia, and (3) the rate-determining step, hydrolysis of the amidino-enzyme. The enzymic reaction is accelerated 5-fold by 0.2 M imidazole. This striking effect is expected for the amidino-enzyme mechanism but otherwise is difficult to explain. The putative amidino-enzyme intermediate can be demonstrated by quenching the [14C]arginine-arginine deiminase reaction at low pH. Under these conditions, 0.5 equivalents of 14C label per mol enzyme dimer were covalently bound.  相似文献   

6.
Cryoenzymology techniques were used to facilitate trapping an acyl-enzyme intermediate in beta-lactamase I catalysis. The enzyme (from Bacillus cereus) was investigated in aqueous methanol cryosolvents over the 25 to -75 degrees C range, and was stable and functional in 70% (v/v) methanol at and below 0 degree C. The value of kcat. decreased linearly with increasing methanol concentration, suggesting that water is a reactant in the rate-determining step. In view of this, the lack of incorporation of methanol into the product means that the water molecule involved in the deacylation is shielded from bulk solvent in the enzyme-substrate complex. From the lack of adverse effects of methanol on the catalytic and structural properties of the enzyme we conclude that 70% methanol is a satisfactory cryosolvent system for beta-lactamase I. The acyl-enzyme intermediate from the reaction with 6-beta-(furylacryloyl)amidopenicillanic acid was accumulated in steady-state experiments at -40 degrees C and the reaction was quenched by lowering the pH to 2. H.p.l.c. experiments showed covalent attachment of the penicillin to the enzyme. Digestion by pepsin and trypsin yielded a single labelled peptide fragment; analysis of this peptide was consistent with Ser-70 as the site of attachment.  相似文献   

7.
R Virden  A K Tan  A L Fink 《Biochemistry》1990,29(1):145-153
Various cryosolvents were investigated for their suitability in cryoenzymological experiments with beta-lactamase from Staphylococcus aureus PC1. On the basis of the minimal effects on the catalytic and structural properties of the enzyme, ternary solvents containing ethylene glycol, methanol, and water were found most suitable. The interaction of beta-lactamase with a number of substrates was studied at subzero temperatures. In general, the reaction profiles were similar to those in aqueous solution at above-zero temperatures, with the exception of the slower rates. For cephalosporin substrates, such as PADAC, in which the 3'-substituent may leave to form a more stable form of the acyl-enzyme [Faraci, W., & Pratt, R. (1985) Biochemistry 24, 903-910], this intermediate could be readily stabilized at subzero temperatures. At -40 degrees C the slow rate of deacylation in the reaction with the chromophoric substrate 6 beta-[(furylacryloyl)amino]penicillanic acid permitted the acyl-enzyme to be stoichiometrically accumulated. This intermediate was then stabilized at low pH with trifluoroacetic acid. Isolation by centrifugal gel filtration, followed by pepsin digestion, gave a penicilloyl-labeled peptide which was isolated by HPLC. Subsequent trypsinolysis of this peptide gave a single labeled peptide, corresponding to the octapeptide surrounding the active-site serine, Ser-70.  相似文献   

8.
The action of pig pepsin on a variety of small peptides including Leu-Trp-Met-Arg, Leu-Trp-Met, Leu-Leu-NH2, benzyloxycarbonyl-Phe-Leu and Gly-Leu-Tyr was studied. Leu-Leu-Leu was found to be the major product from the substrates Leu-Trp-Met-Arg and Leu-Trp-Met, indicating that the predominant reaction at pH 3.4 was a transpeptidation of the acyl-transfer type. Leu-Leu-Leu was also formed in high yield by amino transfer from benzyloxycarbonyl-Phe-Leu. Like the amino-transfer reactions the acyl transfer proceeded via a covalent intermediate, since [14C]leucine was not incorporated into transpeptidation products and did not exchange with enzyme-bound leucine in the presence of acceptors. With Leu-Trp-Met both acyl and amino transpeptidation products, namely Leu-Leu, Leu-Leu-Leu, Met-Met and Met-Met-Met, were formed in addition to methionine and leucine. With Leu-Trp-Met-Arg (1 mM) the pH optimum for the rates of hydrolysis and acyl transfer is about pH 3.4. At this pH the rate of acyl transfer exceeds that of hydrolysis; at pH 2, however, hydrolysis was faster than transfer. A comparison of the effect of the length of substrates and products on the reaction rates allows the conclusion that the binding site can extend over eight to nine amino acid residues. Although the experiments provide no conclusive evidence for or against the involvement of amino and/or acyl intermediates in the hydrolysis of long peptides and proteins, the high yield of transpeptidation reactions of both types observed with some substrates suggests a major role for the intermediates in pepsin-catalysed reactions. The results also show that when pig pepsin is used for the digestion of proteins for sequence work, the likelihood of the formation of transpeptidation products is considerable. In this way peptides not present in the original sequence could easily form in a reasonably good yield.  相似文献   

9.
Bacillus pumilus beta-xylosidase, an enzyme considered restricted to hydrolyzing a narrow range of beta-D-xylosidic substrates with inversion of configuration, was found to catalyze different stereochemical, essentially irreversible, glycosylation reactions with alpha- and beta-D-xylopyranosyl fluoride. The enzyme promoted the hydrolysis of beta-D-xylopyranosyl fluoride at a high rate, V = 6.25 mumol min-1 mg-1 at 0 degrees C, in a reaction that obeyed Michaelis-Menten kinetics. In contrast, its action upon alpha-D-xylopyranosyl fluoride was slow and characterized by an unusual relation between the rate of fluoride release and the substrate concentration, suggesting the possible need for two substrate molecules to be bound at the active center in order for reaction to occur. Moreover, 1H NMR spectra of a digest of alpha-D-xylosyl fluoride showed the substrate to be specifically converted to alpha-D-xylose by the enzyme. The observed retention of configuration is not consistent with direct hydrolysis by this "inverting" enzyme but is strongly indicative of the occurrence of two successive inverting reactions: xylosyl transfer from alpha-D-xylosyl fluoride to form a beta-D-xylosidic product, followed by hydrolysis of the latter to produce alpha-D-xylose. The transient intermediate product formed enzymically from alpha-D-xylosyl fluoride in the presence of [14C]xylose was isolated and shown by its specific radioactivity and 1H NMR spectrum as well as by methylation and enzymic analyses to be 4-O-beta-D-xylopyranosyl-D-xylopyranose containing one [14C]xylose residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. The inhibition of pepsin-catalysed hydrolysis of N-acetyl-l-phenylalanyl-l-phenylalanylglycine by products and product analogues was studied. 2. Inhibitors of the l-configuration give rise to linear non-competitive inhibition, whereas those of the d-configuration show linear competitive behaviour. 3. Non-competitive inhibition by the product N-acetyl-l-phenylalanine indicates an ordered release of products, which supports a common mechanism (involving an ;amino-enzyme') for pepsin-catalysed transpeptidation and hydrolysis reactions. 4. The differences in the types of inhibition caused by product analogues of the l- and d-series emphasize the stereospecificity of the binding of these inhibitors to free enzyme and to the putative amino-enzyme intermediate. 5. The results suggest that it is the anion of the acyl product that is released first in the hydrolytic reaction (see Kitson & Knowles, 1971).  相似文献   

11.
The reactions of papain (EC 3.4.22.2) with substrate-derived diazomethyl ketones reported by Leary, Larsen, Watanabe & Shaw [Biochemistry (1977) 16, 5857--5861] are unusual in that (i) these reagents fail to react with low-molecular-weight thiols and (ii) the rate of reaction with the papain thiol group does not decrease to near-zero values across a pKa of 4 as the pH is decreased. Existing data are shown to suggest an interpretation involving neighbouring-group participation via transient thiohemiketal formation, rate-determining protonation by imidazolium ion and alkylation on sulphur via a three-membered cyclic transition state. Implications for (a) the difference in site-specificity exhibited by halomethyl ketones in their reactions with serine proteinases and cysteine proteinases and (b) stereoelectronic requirements in the mechanism of papain-catalysed hydrolysis are discussed. The possibility of two tetrahedral intermediates between adsorptive complex and acyl-enzyme is indicated.  相似文献   

12.
W S Faraci  R F Pratt 《Biochemistry》1986,25(10):2934-2941
Cefoxitin is a poor substrate of many beta-lactamases, including the RTEM-2 enzyme. Fisher and co-workers [Fisher, J., Belasco, J. G., Khosla, S., & Knowles, J. R. (1980) Biochemistry 19, 2895-2901] showed that the reaction between cefoxitin and RTEM-2 beta-lactamase yielded a moderately stable acyl-enzyme whose hydrolysis was rate-determining to turnover at saturation. The present work shows first that the covalently bound substrate in this acyl-enzyme has a 5-exo-methylene-1,3-thiazine structure, i.e., that the good (carbamoyloxy) 3' leaving group of cefoxitin has been eliminated in formation of the acyl-enzyme. Such an elimination has recently been shown in another case to yield an acyl-beta-lactamase inert to hydrolysis [Faraci, W. S., & Pratt, R. F. (1985) Biochemistry 24, 903-910]. Thus the cefoxitin molecule has two potential sources of beta-lactamase resistance, the 7 alpha-methoxy group and the good 3' leaving group. That the latter is important in the present example is shown by the fact that with analogous substrates where no elimination occurs at the enzyme active site, such as 3'-de(carbamoyloxy)cefoxitin and 3'-decarbamoylcefoxitin, no inert acyl-enzyme accumulates. An analysis of the relevant rate constants shows that the 7 alpha-methoxy group weakens noncovalent binding and slows down both acylation and deacylation rates, but with major effect in the acylation rate, while elimination of the 3' leaving group affects deacylation only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Penicillin acylase catalyses the hydrolysis and synthesis of semisynthetic beta-lactam antibiotics via formation of a covalent acyl-enzyme intermediate. The kinetic and mechanistic aspects of these reactions were studied. Stopped-flow experiments with the penicillin and ampicillin analogues 2-nitro-5-phenylacetoxy-benzoic acid (NIPAOB) and d-2-nitro-5-[(phenylglycyl)amino]-benzoic acid (NIPGB) showed that the rate-limiting step in the conversion of penicillin G and ampicillin is the formation of the acyl-enzyme. The phenylacetyl- and phenylglycyl-enzymes are hydrolysed with rate constants of at least 1000 s-1 and 75 s-1, respectively. A normal solvent deuterium kinetic isotope effect (KIE) of 2 on the hydrolysis of 2-nitro-5-[(phenylacetyl)amino]-benzoic acid (NIPAB), NIPGB and NIPAOB indicated that the formation of the acyl-enzyme proceeds via a general acid-base mechanism. In agreement with such a mechanism, the proton inventory of the kcat for NIPAB showed that one proton, with a fractionation factor of 0.5, is transferred in the transition state of the rate-limiting step. The overall KIE of 2 for the kcat of NIPAOB resulted from an inverse isotope effect at low concentrations of D2O, which is overridden by a large normal isotope effect at large molar fractions of D2O. Rate measurements in the presence of glycerol indicated that the inverse isotope effect originated from the higher viscosity of D2O compared to H2O. Deacylation of the acyl-enzyme was studied by nucleophile competition and inhibition experiments. The beta-lactam compound 7-aminodesacetoxycephalosporanic acid (7-ADCA) was a better nucleophile than 6-aminopenicillanic acid, caused by a higher affinity of the enzyme for 7-ADCA and complete suppression of hydrolysis of the acyl-enzyme upon binding of 7-ADCA. By combining the results of the steady-state, presteady state and nucleophile binding experiments, values for the relevant kinetic constants for the synthesis and hydrolysis of beta-lactam antibiotics were obtained.  相似文献   

14.
A kinetically homogeneous anti-phosphate catalytic antibody preparation was shown to catalyse the hydrolysis of a series of O-aryl N-methyl carbamates containing various substituents in the 4-position of the O-phenyl group. The specific nature of the antibody catalysis was demonstrated by the adherence of these reactions to the Michaelis-Menten equation, the complete inhibition by a hapten analogue, and the failure of the antibody to catalyse the hydrolysis of the 2-nitrophenyl analogue of the 4-nitrophenylcarbamate substrate. Hammett sigma-rho analysis suggests that both the non-catalysed and antibody-catalysed reactions proceed by mechanisms in which development of the aryloxyanion of the leaving group is well advanced in the transition state of the rate-determining step. This is probably the ElcB (elimination-addition) mechanism for the non-catalysed reaction, but for the antibody-catalysed reaction might be either ElcB or B(Ac)2 (addition-elimination), in which the elimination of the aryloxy group from the tetrahedral intermediate has become rate-determining. This result provides evidence of the dominance of recognition of phenolate ion character in the phosphate hapten in the elicitation process, and is discussed in connection with data from the literature that suggest a B(Ac)2 mechanism, with rate-determining formation of the tetrahedral intermediate for the hydrolysis of carbamate substrates catalysed by an antibody elicited by a phosphonamidate hapten in which phenolate anion character is minimized. The present paper contributes to the growing awareness that small differences in the structure of haptens can produce large differences in catalytic characteristics.  相似文献   

15.
Turnover of substrates by many enzymes involves free enzyme forms that differ from the stable form of the enzyme in the absence of substrate. These enzyme species, known as isoforms, have, in general, different physical and chemical properties than the native enzymes. They usually occur only in small concentrations under steady state turnover conditions and thus are difficult to detect. We show in this paper that in one particular case of an enzyme (a class C β-lactamase) with specific substrates (cephalosporins) the presence of an enzyme isoform (E′) can be detected by means of its different reactivity than the native enzyme (E) with a class of covalent inhibitors (phosphonate monoesters). Generation of E′ from E arises either directly from substrate turnover or by way of a branched path from an acyl-enzyme intermediate. The relatively slow spontaneous restoration of E from E′ is accelerated by certain small molecules in solution, for example cyclic amines such as imidazole and salts such as sodium chloride. Solvent deuterium kinetic isotope effects and the effect of methanol on cephalosporin turnover showed that for both E and E′, kcat is limited by deacylation of an acyl-enzyme intermediate rather than by enzyme isomerization.  相似文献   

16.
The kinetics of the inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid are described. Loss of beta-lactamase activity is accompanied by a decrease in protein fluorescence, by the appearance of a protein-bound chromophore at 326 nm, and by loss of tritium from 6 alpha-[3H]-6 beta-bromopenicillanic acid. It is shown that all of the above changes probably have the same rate-determining step. The inactivation reaction is competitively inhibited by cephalosporin C, a competitive inhibitor of this enzyme, and by covalently bound clavulanic acid, suggesting that 6 beta-bromopenicillanic acid reacts directly with the beta-lactamase active site. It is proposed that this inhibitor reacts initially as a normal substrate and that the rate-determining step of the inactivation is acylation of the enzyme. A rapid irreversible inactivation reaction rather than normal hydrolysis of the acyl-enzyme then follows acylation; 6 beta-bromopenicillanic acid is thus a suicide substrate.  相似文献   

17.
Joe K  Borgford TJ  Bennet AJ 《Biochemistry》2004,43(24):7672-7677
The construction and characterization of a novel, thermostable, peptide ligase are described. Three amino acid substitutions were introduced into the secreted bacterial protease Streptomyces griseus protease B (SGPB). Mutations were chosen on the basis of two separate observations: (i) that a single substitution of the nucleophilic serine (S195A) created an enzyme with significant peptide-ligation activity, albeit greatly reduced stability [(2000) Chem. Biol. 7, 163], and (ii) that a pair of substitutions in the substrate-binding pocket (T213L and F228H) greatly increased the thermostability of the wild-type enzyme [(1996) J. Mol. Biol. 257, 233]. The triple mutant, named streptoligase, was found to catalyze peptide ligation (aminolysis of both a thiobenzyl ester and a p-nitroanilide-activated peptide) efficiently in nondenaturing and denaturing conditions including SDS (0.5% w/v) and guanidine hydrochloride (4.0 M). Moreover, streptoligase exhibited a half-live for unfolding of 16.3 min at 55 degrees C in the absence of stabilizing substrates. The fraction of the streptoligase-catalyzed reaction that gave coupled product with the acceptor peptide FAASR-NH(2) was greater for the p-nitroanilide donor (Sc-AAPF-pNA) than for the benzyl thioester substrate (Sc-AAPF-SBn). These observations are consistent with ligation proceeding through an acyl-enzyme intermediate involving histidine-57. In the case of the thioester donor the triple mutant promotes the direct attack of water on the thioester carbonyl carbon, in addition to hydrolysis occurring at the stage of the acyl-enzyme intermediate. The strategy of multiple point mutations outlined in this study may provide a general means of converting enzymes with chymotrypsin-like protein folds into peptide ligases.  相似文献   

18.
Cytoplasmic aldehyde dehydrogenase catalyses the hydrolysis of methyl p-nitrophenyl (PNP) carbonate at an appreciable rate that is markedly stimualted by NAD+ or NADH. The nuleotides accelerate the rate-limiting hydrolysis of the acyl-enzyme intermediate while slowing the observed burst of p-nitrophenoxide production. With PNP dimethylcarbamate the enzyme catalyses the slow release of approx. 1 molecule of p-nitrophenoxide per tetrameric enzyme molecule; during the reaction the enzyme becomes effectively inactivated, as the rate of hydrolysis of the acyl-enzyme is virtually zero. The presence of NAD+, NADH, propionaldehyde, chloral hydrate, diethylstilboestrol or disulfiram slows the reaction of enzyme with PNP dimethylcarbamate. The reaction appears to be dependent on a group of pKa 7.6, possibly a cysteine residue. The effect of PNP dimethylcarbamate on the dehydrogenase activity of the enzyme is consistent with there being a single type of active site for the enzyme's dehydrogenase and esterase activities. Steric and electronic factors that govern reaction of the enzyme with PNP substrates are discussed.  相似文献   

19.
Activated Lactococcus lactis beta-phosphoglucomutase (betaPGM) catalyzes the conversion of beta-d-glucose 1-phosphate (betaG1P) derived from maltose to beta-d-glucose 6-phosphate (G6P). Activation requires Mg(2+) binding and phosphorylation of the active site residue Asp8. Initial velocity techniques were used to define the steady-state kinetic constants k(cat) = 177 +/- 9 s(-)(1), K(m) = 49 +/- 4 microM for the substrate betaG1P and K(m) = 6.5 +/- 0.7 microM for the activator beta-d-glucose 1,6-bisphosphate (betaG1,6bisP). The observed transient accumulation of [(14)C]betaG1,6bisP (12% at approximately 0.1 s) in the single turnover reaction carried out with excess betaPGM (40 microM) and limiting [(14)C]betaG1P (5 microM) and betaG1,6bisP (5 microM) supported the role of betaG1,6bisP as a reaction intermediate in the conversion of the betaG1P to G6P. Single turnover reactions of [(14)C]betaG1,6bisP with excess betaPGM were carried out to demonstrate that phosphoryl transfer rather than ligand binding is rate-limiting and to show that the betaG1,6bisP binds to the active site in two different orientations (one positioning the C(1)phosphoryl group for reaction with Asp8, and the other orientation positioning the C(6)phosphoryl group for reaction with Asp8) with roughly the same efficiency. Single turnover reactions carried out with betaPGM, [(14)C]betaG1P, and unlabeled betaG1,6bisP demonstrated complete exchange of label to the betaG1,6bisP during the catalytic cycle. Thus, the reorientation of the betaG1,6bisP intermediate that is required to complete the catalytic cycle occurs by diffusion into solvent followed by binding in the opposite orientation. Published X-ray structures of betaG1P suggest that the reorientation and phosphoryl transfer from betaG1,6bisP occur by conformational cycling of the enzyme between the active site open and closed forms via cap domain movement. Last, the equilibrium ratio of betaG1,6bisP to betaG1P plus G6P was examined to evidence a significant stabilization of betaPGM aspartyl phosphate.  相似文献   

20.
The effects of modifiers (NAD+, NADH, propionaldehyde, chloral hydrate, diethylstilboestrol and p-nitrobenzaldehyde) on the hydrolysis of p-nitrophenyl (PNP) pivalate (PNP trimethylacetate) catalysed by cytoplasmic aldehyde dehydrogenase are reported. In each case a different inhibition pattern is obtained to that observed when the substrate is PNP acetate; for example, propionaldehyde and chloral hydrate competitively inhibit the hydrolysis of PNP acetate, but are mixed inhibitors with PNP pivalate. The kinetic results can be rationalized in terms of different rate-determining steps: acylation of the enzyme in the case of the pivalate but acyl-enzyme hydrolysis for the acetate. This is confirmed by stopped-flow studies, in which a burst of p-nitrophenoxide is observed when the substrate is PNP acetate, but not when it is the pivalate. PNP pivalate inhibits the dehydrogenase activity of the enzyme competitively with the aldehyde substrate; this is most simply explained if the esterase and dehydrogenase reactions occur at a common enzymic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号