首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H M Ellis  D R Spann  J W Posakony 《Cell》1990,61(1):27-38
The function of the extramacrochaetae (emc) gene is required to establish the normal spatial pattern of adult sensory organs in Drosophila. emc acts to suppress sensory organ development in certain regions of the body surface, apparently by antagonizing the function of the achaete and scute genes of the achaetescute complex (AS.C). We have found that emc encodes a novel member of the helix-loop-helix (HLH) family of proteins. The emc protein shares the dimerization domain of other HLH proteins but lacks their DNA binding motif. We propose a model in which the emc protein negatively regulates sensory organ determination by forming heterodimers with the HLH proteins encoded by the AS-C and/or daughterless, thereby altering or interfering with their activity.  相似文献   

3.
4.
5.
An early step in the development of the large mesothoracic bristles (macrochaetae) of Drosophila is the expression of the proneural genes of the achaete-scute complex (AS-C) in small groups of cells (proneural clusters) of the wing imaginal disc. This is followed by a much increased accumulation of AS-C proneural proteins in the cell that will give rise to the sensory organ, the SMC (sensory organ mother cell). This accumulation is driven by cis-regulatory sequences, SMC-specific enhancers, that permit self-stimulation of the achaete, scute and asense proneural genes. Negative interactions among the cells of the cluster, triggered by the proneural proteins and mediated by the Notch receptor (lateral inhibition), block this accumulation in most cluster cells, thereby limiting the number of SMCs. Here we show that the proneural proteins trigger, in addition, positive interactions among cells of the cluster that are mediated by the Epidermal growth factor receptor (EGFR) and the Ras/Raf pathway. These interactions, which we denominate 'lateral co-operation', are essential for macrochaetae SMC emergence. Activation of the EGFR/Ras pathway appears to promote proneural gene self-stimulation mediated by the SMC-specific enhancers. Excess EGFR signalling can overrule lateral inhibition and allow adjacent cells to become SMCs and sensory organs. Thus, the EGFR and Notch pathways act antagonistically in notum macrochaetae determination.  相似文献   

6.
7.
We have searched for trans-regulatory genes in two genetic systems in Drosophila, the bithorax complex (BX-C) and the achaete-scute complex (AS-C). Previous genetic evidence suggests that the activation of both BX-C and AS-C, depends on trans-regulatory genes (Polycomb, Pc, in the former and hairy, h, in the latter) acting in a negative type of control. Mutants of these regulatory genes in heterozygous condition have dominant derepression phenotypes in flies with extra doses of the corresponding gene complexes. We have searched for new loci, with similar gene-dose relationships. We have isolated only new alleles (six) of Pc in the BX-C experiment. In the AS-C experiment four h alleles, and 13 alleles of a new locus (extramacrochaetae, emc) have been discovered. Whereas the h locus shows specific interactions upon achaete, the new locus, emc, is specific for the scute part of the AS-C. Statistical analysis suggests that these are the only loci in the genome with those dose-dependent properties in the two systems.  相似文献   

8.
Mi-2, the central component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is known as an SNF2-type ATP-dependent nucleosome remodeling factor. No morphological mutant phenotype of Drosophila Mi-2 (dMi-2) had been reported previously; however, we found that rare escapers develop into adult flies showing an extra bristle phenotype. The dMi-2 enhanced the phenotype of ac(Hw49c), which is a dominant gain-of-function allele of achaete (ac) and produces extra bristles. Consistent with these observations, the ac-expressing proneural clusters were expanded, and extra sensory organ precursors (SOP) were formed in the dMi-2 mutant wing discs. Immunostaining of polytene chromosomes showed that dMi-2 binds to the ac locus, and dMi-2 and acetylated hisotones distribute on polytene chromosomes in a mutually exclusive manner. The chromatin immunoprecipitation assay of the wing imaginal disc also demonstrated a binding of dMi-2 on the ac locus. These results suggest that the Drosophila Mi-2/NuRD complex functions in neuronal differentiation through the repression of proneural gene expression by chromatin remodeling and histone deacetylation.  相似文献   

9.
10.
Lai EC 《Genetics》2003,163(4):1413-1425
Tufted is a classical Drosophila mutant characterized by a large number of ectopic mechanosensory bristles on the dorsal mesothorax. Unlike other ectopic bristle mutants, Tufted is epistatic to achaete and scute, the proneural genes that normally control the development of these sensory organs. In this report, I present genetic and molecular evidence that Tufted is a gain-of-function allele of the proneural gene amos that ectopically activates mechanosensory neurogenesis. I also systematically examine the ability of the various proneural bHLH proteins to cross-activate each other and find that their ability to do so is in general relatively limited, despite their common ability to induce the formation of mechanosensory bristles. This phenomenon seems instead to be related to their shared ability to activate Asense and Senseless.  相似文献   

11.
The achaete-scute complex of Drosophila has been the focus of extensive genetic and developmental analysis. Of the four genes at this locus, achaete and scute appear to act redundantly to specify the peripheral nervous system. They share cis-regulatory elements and are co-expressed at the same locations. A mutation removing scute activity has been previously described; it causes a loss of some sensory bristles. Thus, when Scute is absent, the activity of achaete allows formation of the remaining bristles. However, all existing achaete mutants are rearrangements affecting regulatory sequences common to both achaete and scute. To determine the level of redundancy between the two genes, we have used a P element approach to generate a null allele of achaete, which leaves scute and all cis-regulatory elements intact. We find that the peripheral nervous system of achaete null mutant larvae and imagos lacks any detectable phenotype. However, when the levels of Scute are limiting, then some sensory organs are missing in achaete mutant flies. achaete and scute are thought to have arisen from a duplication event about 100 Myr ago. The difference between achaete and scute null flies is surprising and raises the question of the retention of both genes during the course of evolution.  相似文献   

12.
The achaete-scute complex (AS-C) and the daughterless (da) genes encode helix-loop-helix proteins which have been shown to interact in vivo and to be required for neurogenesis. We show in vitro that heterodimers of three AS-C products with DA bind DNA strongly, whereas DA homodimers bind weakly and homo or heterocombinations of AS-C products not at all. Proteins unable to dimerize did not bind DNA. Target sequences for the heterodimers were found in the promoters of the hunchback and the achaete genes. Using sequences of the former we show that the DNA binding results obtained in vitro fully correlate with the ability of different combinations to activate the expression of a reporter gene in yeast. Embryos deficient for the lethal of scute gene fail to activate hunchback in some neural lineages in a pattern consistent with the lack of a member of a multigene family.  相似文献   

13.
14.
1. We have analysed the development of the larval PNS of Drosophila, with the aim of understanding the genetic programme that underlies this development. 2. The achaete-scute gene complex (AS-C), which is required for the development of the adult PNS, is also necessary for the larval PNS. The analysis of different AS-C lesions shows that the larval PNS results from the superimposition of two independent subpatterns, each of which depends on one AS-C gene. 3. The analysis of the two subpatterns reveals hidden homologies between the very different arrangements of sense organs observed on different segments, suggesting that the initial pattern is the same in all segments and is later modified in the different segments. 4. The early arrangement of sensory mother cells can be visualised in a special transgenic line, A37. In this line the initial repetitive pattern inferred above can be directly observed. Furthermore this line makes it possible to decide whether a given mutation acts on the very early steps of the PNS development (determination) or at later stages (differentiation). 5. The line A37 has been used to show that mutations that reduce the PNS such as AS-C- or da- alter the very first steps of the process, while mutations which result in a hypertrophied PNS such as N seem to alter a subsequent step. We end up with an overview of the genetic operations that generate the arrangement of sense organs and sensory neurons.  相似文献   

15.
16.
17.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis.  相似文献   

18.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis. Received: 20 September 1997 / Accepted: 8 October 1997  相似文献   

19.
The Drosophila embryonic peripheral nervous system (PNS) contains segment-specific spatial patterns of sensory organs which derive from the ectoderm. Many studies have established that the homeotic genes of Drosophila control segment specific characteristics of the epidermis, and more recently these genes have also been shown to control gut morphogenesis through their expression in the visceral mesoderm (Tremml, G. and Bienz, M. (1989), EMBO J. 8, 2677-2685). We report here the roles of homeotic genes in establishing the spatial patterns of sensory organs in the embryonic PNS. The PNS was examined in embryos homozygous for mutations in the homeotic genes Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) with antibodies that label specific subsets of sensory organs. Our results suggest that the homeotic genes have specific roles in establishing the correct spatial patterns of sensory organs in their normal domains of expression. In addition, we also report the effects of ectopic expression of the homeotic genes labial (lab), Deformed (Dfd), Scr, Antp or Ubx on the normal development of sensory organs in the embryonic PNS. Interestingly, while previous studies have concluded that ectopic expression of the homeotic genes Dfd, Scr and Antp has no effect on the segmental identity of the abdominal segments, our results demonstrate that this is not true. We show that ectopic expression of these genes does result in the disruption of the developing PNS in the abdomen. Our results are suggestive of a role for the homeotic gene products in regulating genes which are necessary for generating sensory progenitor cells in the developing PNS.  相似文献   

20.
The genes of the achaete-scute complex (AS-C) confer on cells the ability to become neural precursors. Their expression is restricted to groups of cells, the proneural clusters, which occupy specific positions within the embryo neural anlagen and the larva imaginal discs. Neuroblasts or sensory organ mother cells are born within these clusters. Thus, the patterns of expression of the AS-C genes help to define the topology of the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号