首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human iris color is a quantitative, multifactorial phenotype that exhibits quasi-Mendelian inheritance. Recent studies have shown that OCA2 polymorphism underlies most of the natural variability in human iris pigmentation but to date, only a few associated polymorphisms in this gene have been described. Herein, we describe an iris color score (C) for quantifying iris melanin content in-silico and undertake a more detailed survey of the OCA2 locus (n = 271 SNPs). In 1,317 subjects, we confirmed six previously described associations and identified another 27 strongly associated with C that were not explained by continental population stratification (OR 1.5–17.9, P = 0.03 to <0.001). Haplotype analysis with respect to these 33 SNPs revealed six haplotype blocks and 11 hap-tags within these blocks. To identify genetic features for best-predicting iris color, we selected sets of SNPs by parsing P values among possible combinations and identified four discontinuous and non-overlapping sets across the LD blocks (p-Selected SNP sets). In a second, partially overlapping sample of 1,072, samples with matching diplotypes comprised of these p-Selected OCA2 SNPs exhibited a rate of C concordance of 96.3% (n = 82), which was significantly greater than that obtained from randomly selected samples (62.6%, n = 246, P<0.0001). In contrast, the rate of C concordance using diplotypes comprised of the 11 identified hap-tags was only 83.7%, and that obtained using diplotypes comprised of all 33 SNPs organized as contiguous sets along the locus (defined by the LD block structure) was only 93.3%. These results confirm that OCA2 is the major human iris color gene and suggest that using an empirical database-driven system, genotypes from a modest number of SNPs within this gene can be used to accurately predict iris melanin content from DNA. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
Smoking is a major public health problem, but the genetic factors associated with smoking behaviors are not fully elucidated. Here, we have conducted an integrated genome-wide association study to identify common copy number polymorphisms (CNPs) and single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) in Japanese smokers ( = 17,158). Our analysis identified a common CNP with a strong effect on CPD (rs8102683; ) in the 19q13 region, encompassing the CYP2A6 locus. After adjustment for the associated CNP, we found an additional associated SNP (rs11878604; ) located 30 kb downstream of the CYP2A6 gene. Imputation of the CYP2A6 locus revealed that haplotypes underlying the CNP and the SNP corresponded to classical, functional alleles of CYP2A6 gene that regulate nicotine metabolism and explained 2% of the phenotypic variance of CPD (ANOVA -test ). These haplotypes were also associated with smoking-related diseases, including lung cancer, chronic obstructive pulmonary disease and arteriosclerosis obliterans.  相似文献   

4.
To optimize the strategies for population-based pharmacogenetic studies, we extensively analyzed single-nucleotide polymorphisms (SNPs) and haplotypes in 199 drug-related genes, through use of 4,190 SNPs in 752 control subjects. Drug-related genes, like other genes, have a haplotype-block structure, and a few haplotype-tagging SNPs (htSNPs) could represent most of the major haplotypes constructed with common SNPs in a block. Because our data included 860 uncommon (frequency <0.1) SNPs with frequencies that were accurately estimated, we analyzed the relationship between haplotypes and uncommon SNPs within the blocks (549 SNPs). We inferred haplotype frequencies through use of the data from all htSNPs and one of the uncommon SNPs within a block and calculated four joint probabilities for the haplotypes. We show that, irrespective of the minor-allele frequency of an uncommon SNP, the majority (mean +/- SD frequency 0.943+/-0.117) of the minor alleles were assigned to a single haplotype tagged by htSNPs if the uncommon SNP was within the block. These results support the hypothesis that recombinations occur only infrequently within blocks. The proportion of a single haplotype tagged by htSNPs to which the minor alleles of an uncommon SNP were assigned was positively correlated with the minor-allele frequency when the frequency was <0.03 (P<.000001; n=233 [Spearman's rank correlation coefficient]). The results of simulation studies suggested that haplotype analysis using htSNPs may be useful in the detection of uncommon SNPs associated with phenotypes if the frequencies of the SNPs are higher in affected than in control populations, the SNPs are within the blocks, and the frequencies of the SNPs are >0.03.  相似文献   

5.
Single nucleotide polymorphisms (SNPs) are widely used when investigators try to map complex disease genes. Although biallelic SNP markers are less informative than microsatellite markers, one can increase their information content by using haplotypes. However, assigning haplotypes (i.e., assigning phase) correctly can be problematic in the presence of SNP heterozygosity. For example, a doubly heterozygous individual, with genotype 12, 12, could have haplotypes 1-1/2-2 or 1-2/2-1 with equal probability; in the absence of additional information, there is no way to determine which haplotype is correct. Thus an algorithm that assigns haplotypes to such an individual will assign the wrong one 50% of the time. We have studied the frequency of haplotype misassignments, i.e., haplotypes that are misassigned solely because of inherent marker ambiguity (not because of errors in genotyping or calculation). We examined both SNPs and microsatellite markers. We used the computer programs GENEHUNTER and SIMWALK to assign the haplotypes. We simulated (a) families with 1-5 children, (b) haplotypes involving different numbers of marker loci (3, 5, 7 and 10 loci, all in linkage equilibrium), and (c) different allele frequencies. Misassignment rates are highest (a) in small families, (b) with many SNP loci, and (c) for loci with the greatest heterozygosity (i.e., where both alleles have frequency 0.5). For example, for triads (i.e., one-child families with both parents genotyped), misassignment rates for SNPs can reach almost 50%. Family sizes of 4-5 children are required in order to ensure a misassignment frequency of < or = 5% for ten-SNP haplotypes with allele frequencies of 0.25-0.5. For microsatellites, a family size of at least 2-3 children is necessary to keep haplotyping misassignments < or = 5%. Finally, we point out that it is misleading for a computer program to yield haplotype assignments without indicating that they may have been misassigned, and we discuss the implications of these misassignments for association and linkage analysis.  相似文献   

6.
Eye color is determined as a polymorphism and polygenic trait. Brown is the most common eye color in the world, accounting for about 79%, blue eye color for about 8–10%, hazel for 5%, and green for 2%. Rare-colored eyes include gray and red/violet. Different factors are involved in determining eye color. The two most important factors are the iris pigment and the way light is scattered from the iris. Gene expression determines the iris pigmentation and how much melanin is present in the eye, which is the number of melanin subunits that identify eye color. The genes involved in the pigmentation of single-nucleotide polymorphism (SNP) have a significant role; and even some genes are included only in the eye color through SNP. MicroRNAs also affect melanocyte synthesis, which is usually affected by the downregulation of essential genes involved in pigmentation. In this study, we assess the biochemical pathways of melanin synthesis, and the role of each gene in this pathway also has been examined in the signaling pathway that stimulates melanin synthesis.  相似文献   

7.
Mutations in the gene OCA2 are responsible for oculocutaneous albinism type 2, but polymorphisms in and around OCA2 have also been associated with normal pigment variation. In Europeans, three haplotypes in the region have been shown to be associated with eye pigmentation and a missense SNP (rs1800407) has been associated with green/hazel eyes (Branicki et al. in Ann Hum Genet 73:160-170, 2009). In addition, a missense mutation (rs1800414) is a candidate for light skin pigmentation in East Asia (Yuasa et al. in Biochem Genet 45:535-542, 2007; Anno et al. in Int J Biol Sci 4, 2008). We have genotyped 3,432 individuals from 72 populations for 21 SNPs in the OCA2-HERC2 region including those previously associated with eye or skin pigmentation. We report that the blue-eye associated alleles at all three haplotypes were found at high frequencies in Europe; however, one is restricted to Europe and surrounding regions, while the other two are found at moderate to high frequencies throughout the world. We also observed that the derived allele of rs1800414 is essentially limited to East Asia where it is found at high frequencies. Long-range haplotype tests provide evidence of selection for the blue-eye allele at the three haplotyped systems but not for the green/hazel eye SNP allele. We also saw evidence of selection at the derived allele of rs1800414 in East Asia. Our data suggest that the haplotype restricted to Europe is the strongest marker for blue eyes globally and add further inferential evidence that the derived allele of rs1800414 is an East Asian skin pigmentation allele.  相似文献   

8.
9.
We previously defined haplotypes of single nucleotide polymorphisms (SNP) with possible relevance to multiple sclerosis (MS) in 2 CC chemokine ligand (CCL) clusters in chromosome 17q11. The 17q11 region was also identified as a susceptibility locus by a meta-analysis of linkage studies. To confirm and refine the previous finding in a second, high resolution SNP scan in a new set of families. We genotyped 232 SNPs in 1369 individuals in 361 MS families. Transmission of marker alleles and haplotypes from unaffected parents to affected offspring was tested by using the pedigree disequilibrium test, the TRANSMIT 2.5 program, and the family and haplotype based association tests. Distribution of linkage disequilibrium (LD) was assessed by ldmax. In consensus with observations in the first scan, the present study identified haplotypes within CCL3 and CCL15 in the telomeric CCL cluster. There was also an overlap in the findings in the centromeric CCL cluster. Strong and extensive LD was detected both within the centromeric and telomeric CCL gene clusters. The present study replicates our previous findings and further suggests the existence of MS associated haplotypes within genes of CCL3 and CCL15. Haplotypes of interest are also present within the centromeric gene cluster (including CCL2, CCL7, CCL11, CCL8, and CCL13), but extensive LD prevents further refinement of these haplotypes by using the methods applied. Sequencing of the identified chromosomal segments and their flanking regions will be necessary to define specific variants with direct relevance to MS pathogenesis.  相似文献   

10.
Neuropeptide Y (NPY) is an appetite hormone that acts centrally to control feeding behavior. The 5' and exon 2 regions of NPY2R, one of five NPY receptor genes, have been weakly and inconsistently implicated with obesity. With the ATG start site of the gene at the beginning of exon 2, single-nucleotide polymorphisms (SNPs) across intron 1 may show stronger associations with obesity than expected. Two 5' SNPs, three intron 1 SNPs, and one synonymous exon 2 SNP were genotyped on 2,985 white Utah subjects. Previously associated FTO, NPY, NPY1R, MC4R, PPARGC1A, OR7D4, and four NPFFR2 SNPs were also genotyped and related to BMI. One NPY2R 5' SNP (rs12649641, P = 0.008), an exon 2 SNP (rs2880415, P = 0.009), and an intron 1 SNP (rs17376826, P = 7 × 10(-6)) were each significantly associated with BMI. All three SNPs, plus FTO (rs9939609, P = 1.5 × 10(-6)) and two NPFFR2 SNPs (rs4129733, P = 3.7 × 10(-13) and rs11940196, 4.2 × 10(-10)) remained significant in a multiple regression additive model. Diplotypes using the estimated haplotypes of NPY2R, NPFFR2, and MC4R were significantly associated with BMI (P = 1.0 × 10(-10), 3.2 × 10(-8), and 1.1 × 10(-4), respectively). Haplotypes of NPY2R, NPFFR2, and MC4R, plus the FTO SNP, explained 9.6% of the BMI variance. SNP effect sizes per allele for the four genes ranged from 0.8 to 3.5 kg/m(2). We conclude that haplotypes containing the rs17376826 SNP in intron 1 of NPY2R have strong associations with BMI, some NPFFR2 haplotypes are strongly protective against or increase risk of obesity, and both NPY2R and NPFFR2 play important roles in obesity predisposition independent of FTO and MC4R.  相似文献   

11.
The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.  相似文献   

12.
Little is known about the extent of allelic diversity of genes in the complex polyploid, sugarcane. Using sucrose phosphate synthase (SPS) Gene (SPS) Family III as an example, we have amplified and sequenced a 400 nt region from this gene from two sugarcane lines that are parents of a mapping population. Ten single nucleotide polymorphisms (SNPs) were identified within the 400 nt region of which seven were present in both lines. In the elite commercial cultivar Q165A, 10 sequence haplotypes were identified, with four haplotypes recovered at 9% or greater frequency. Based on SNP presence, two clusters of haplotypes were observed. In IJ76-514, a Saccharum officinarum accession, 8 haplotypes were identified with 4 haplotypes recovered at 13% or greater frequency. Again, two clusters of haplotypes were observed. The results suggest that there may be two SPS Gene Family III genes per genome in sugarcane, each with different numbers of different alleles. This suggestion is supported by sequencing results in an elite parental sorghum line, 403463-2-1, in which 4 haplotypes, corresponding to two broad types, were also identified. Primers were designed to the sugarcane SNPs and screened over bulked DNA from high and low Sucrose-containing progeny from a cross between Q165A and IJ76-514. The SNP frequency did not vary in the two bulked DNA samples, suggesting that these SNPs from this SPS gene family are not associated with variation in sucrose content. Using an ecotilling approach, two of the SPS Gene Family III haplotypes were mapped to two different linkage groups in homology group 1 in Q165A. Both haplotypes mapped near QTLs for increased sucrose content but were not themselves associated with any sugar-related trait.  相似文献   

13.
14.
Developed recently, high resolution melting (HRM) analysis is an efficient, accurate and inexpensive method for distinguishing DNA polymorphisms. HRM has been used to identify mutations in human genes, and to detect SNPs, INDELs and microsatellites in plants. However, its capacity to discriminate DNA variants in the context of complex haplotypes involving INDEL as well as SNP variants has not been examined until now. In this study, we genotyped an almond (Prunus dulcis (Mill.) D. A. Webb, syn. Prunus amygdalus Batsch) pseudo-testcross mapping population that showed segregation of complex haplotypes associated with CYP79D16 promoter sequence. The 175 bp region in question included a 7 bp INDEL and 3 SNPs, and manifested as three different haplotypes in the parents. Thus, with one homozygous and one heterozygous parent, two relevant genotypes were identified in the mapping population. Although the population displayed monomorphism with respect to the INDEL and one of the SNPs, HRM was sufficiently sensitive to distinguish genotypes on the basis of the two informative SNPs, and the resulting data were used to map CYP79D16 to linkage group 6 of the almond genome. Thus the capacity of HRM to resolve genotypes arising from complex haplotypes has been demonstrated, and this has important implications for the design of efficient HRM markers for various genetic applications including mapping, population studies and biodiversity analyses.  相似文献   

15.
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.  相似文献   

16.
Applications of single nucleotide polymorphisms in crop genetics   总被引:26,自引:0,他引:26  
The discovery of single nucleotide polymorphisms (SNPs) and insertions/deletions, which are the basis of most differences between alleles, has been simplified by recent developments in sequencing technology. SNP discovery in many crop species, such as corn and soybean, is relatively straightforward because of their high level of intraspecific nucleotide diversity, and the availability of many gene and expressed sequence tag (EST) sequences. For these species, direct readout of SNP haplotypes is possible. Haplotype-based analysis is more informative than analysis based on individual SNPs, and has more power in analyzing association with phenotypes. The elite germplasm of some crops may have been subjected to bottlenecks relatively recently, increasing the amount of linkage disequilibrium (LD) present and facilitating the association of SNP haplotypes at candidate gene loci with phenotypes. Whole-genome scans may help identify genome regions that are associated with interesting phenotypes if sufficient LD is present. Technological improvements make the use of SNP and indel markers attractive for high-throughput use in marker-assisted breeding, EST mapping and the integration of genetic and physical maps.  相似文献   

17.
Ma L  Xue Y  Liu Y  Wang Z  Cui X  Li P  Fu S 《Hereditas》2005,142(2005):103-111
It has been shown that the variants of alcohol dehydrogenase (ADH) genes exhibit great diversities among various populations and are associated with susceptibility to alcoholism. To investigate the distribution of SNPs at ADH genes in Chinese populations and the genetic relationship of these groups, we collected 467 individuals from 15 groups distributing widely from north to south in China and genotyped 7 SNPs at ADH genes respectively. The statistic analyses of allele frequencies, estimated haplotype frequencies, pairwise linkage disequilibrium, AMOVA (analysis of molecular variance), pairwise Fst', and cluster analysis indicated (1) that six of these seven SNPs showed great variations in the 15 Chinese populations, and three of them (RsaI, SspI, EcoRI), were confirmed to be informative SNPs. However, the causative SNP ADH1B Arg47His confirmed in case-control studies could not act as significant indicator to distinguish bibulous groups from non-bibulous groups in healthy individuals; (2) haplotypes constructed with ADH SNPs could be used as markers to discern different populations in China, and six-allele haplotype "221211" was the most common one defined in present study; (3) on the basis of SNPs analysis of ADH genes, the 15 populations were grouped into northern groups and southern groups. Moreover, the origin relationship among the populations was indicated according to the results of cluster analysis.  相似文献   

18.
Xiang X  Jiang Y  Ni Y  Fan M  Shen F  Wang X  Han J  Cui C 《Physiological genomics》2012,44(5):318-328
Polymorphisms in the human catechol-O-methyltransferase (COMT) gene have been widely studied for their role in pain and analgesia. In this study, sensitivity to potassium iontophoresis, visual analog scale measurements for fixed twofold pain threshold stimulation and pain threshold changes induced by transcutaneous electrical acupoint stimulation (TEAS) were assessed in a population of healthy Chinese males. These results were correlated with the alleles of six single nucleotide polymorphisms (SNP) or diplotypes of common haplotypes designated as low pain sensitive, average pain sensitive, and high pain sensitive in the COMT gene of these subjects. Our results reveal that the alleles of each SNP are not significantly correlated with pain perception except for the rs4633 allele in the 2 Hz TEAS session (P < 0.05). In addition, the six diplotypes of COMT haplotypes, which cover 92.5% of the Chinese population, are also not correlated with pain perception. Moreover, there were no significant differences in pain threshold changes induced by 2 and 100 Hz TEAS among the diplotypes of each SNP or the various haplotypes. These results suggest that COMT activity do not play a significant role in pain perception and TEAS-induced analgesia in the Chinese Han male population.  相似文献   

19.
The neuropeptide galanin is widely expressed in the periphery and the central nervous system and mediates diverse physiological processes and behaviors including alcohol abuse, depression and anxiety. Four genes encoding galanin and its receptors have been identified (GAL, GALR1, GALR2 and GALR3). Recently we found that GAL haplotypes were associated with alcoholism, raising the possibility that genetic variation in GALR1, GALR2 and GALR3 might also alter alcoholism risk. Tag single nucleotide polymorphisms (SNPs) were identified by genotyping SNP panels in controls from five populations. For the association study with alcoholism, six GALR1, four GALR2 and four GALR3 SNPs were genotyped in a large cohort of Finnish alcoholics and non-alcoholics. GALR3 showed a significant association with alcoholism that was driven by one SNP (rs3,091,367). Moreover, the combination of the GALR3 rs3,091,367 risk allele and GAL risk haplotypes led to a modestly increased odds ratio (OR) for alcoholism (2.4) as compared with the effect of either GAL (1.9) or GALR3 alone (1.4). Likewise, the combination of the GALR3 and GAL risk diplotypes led to an increased OR for alcoholism (4.6) as compared with the effect of either GAL (2.0) or GALR3 alone (1.6). There was no effect of GALR1 or GALR2 on alcoholism risk. This evidence suggests that GALR3 mediates the alcoholism-related actions of galanin.  相似文献   

20.
Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87?×?10(-12) for SNP rs634990 in Caucasians, and 9.65?×?10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20?×?10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95?% CI 1.64, 2.16, P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号