首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ting L  Jun H  Junjie C 《DNA Repair》2010,9(12):1241-1248
Maintenance of genome stability depends on efficient and accurate repair of DNA lesions. Failure to properly repair damaged DNA can cause cell death, mutations and chromosomal instability, which eventually lead to tumorigenesis. The E3 ligase RAD18 is well-known for its function in DNA damage bypass and post-replication repair (PRR) in yeast and vertebrates via its ability to facilitate PCNA mono-ubiquitination at stalled replication forks. However, emerging evidence has also indicated that RAD18 plays an important role in homologous recombination (HR) in mammalian cells, which is an error-free DNA repair pathway that mediates the repair of double-strand breaks (DSBs). Here, we review how RAD18 carries out these distinct functions in response to different types of DNA lesions.  相似文献   

2.
Stalled replication forks pose a serious threat to genome integrity. To overcome the catastrophic consequences associated with fork demise, translesion synthesis (TLS) polymerases such as poleta promote DNA synthesis past lesions. Alternatively, a stalled fork may collapse and undergo repair by homologous recombination. By using fractionated cell extracts and purified recombinant proteins, we show that poleta extends DNA synthesis from D loop recombination intermediates in which an invading strand serves as the primer. Extracts from XP-V cells, which are defective in poleta, exhibit severely reduced D loop extension activity. The D loop extension activity of poleta is unusual, as this reaction cannot be promoted by the replicative DNA polymerase delta or by other TLS polymerases such as poliota. Moreover, we find that poleta interacts with RAD51 recombinase and RAD51 stimulates poleta-mediated D loop extension. Our results indicate a dual function for poleta at stalled replication forks: the promotion of translesion synthesis and the reinitiation of DNA synthesis by homologous recombination repair.  相似文献   

3.
Mechanisms of Dealing with DNA Damage-Induced Replication Problems   总被引:1,自引:0,他引:1  
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.  相似文献   

4.
Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.  相似文献   

5.
Replication forks inevitably stall at damaged DNA in every cell cycle. The ability to overcome DNA lesions is an essential feature of the replication machinery. A variety of specialized polymerases have recently been discovered, which enable cells to replicate past various forms of damage by a process termed translesion synthesis. Alternatively, homologous recombination can be used to restart DNA replication across the lesion. Genetic and biochemical studies have shed light on the impact of these two post-replication repair pathways in bacteria and yeast. In vertebrates, however, a genetic approach to study post-replication repair has been compromised because many of the genes involved appear to be essential for embryonic development. We have taken advantage of the chicken cell line DT40 to perform a genetic analysis of translesion synthesis and homologous recombination and to characterize genetic interactions between these two pathways in vertebrates. In this article, we aim to summarize our current understanding of post-replication repair in DT40 in the perspective of bacterial, yeast and mammalian genetics.  相似文献   

6.
Brachman EE  Kmiec EB 《DNA Repair》2005,4(4):445-457
The repair of point mutations directed by modified single-stranded DNA oligonucleotides is dependent on the activity of proteins involved in homologous recombination (HR). As a consequence, factors that stimulate homologous recombination, such as double strand breaks, can impact the frequency with which repair occurs. Here, we report that the stalling of replication forks can also activate the gene repair pathway and lead to an enhanced level of nucleotide exchange. The mammalian cell line, DLD-1, containing an integrated mutant eGFP gene, was used as an assay system to explore how replication fork activity affects the overall repair reaction. The addition of 2',3'-dideoxycytidine (ddC), a nucleoside analog that retards the rate of elongation and effectively stalls the replication fork, results in a lengthened S phase and an increased number of gene repair events. This stimulation was reversed when caffeine was added to the reaction at concentrations that block the homologous recombination pathway. In contrast, the nucleoside analog, 1-beta-D-arabinofuranosylcytosine which stops replication in these cells, failed to stimulate the gene repair reaction to any appreciable degree until the block is released and active replication resumes. Furthermore, overexpression of wild-type p53 which is known to bind transiently to stalled replication forks blocked the stimulatory effect of ddC. Overexpression of mutant p53 genes, deficient in the capacity to bind DNA, however, did not inhibit the reaction. Our results indicate that an expansion of S phase and a transient stalling of replication forks can increase the frequency of targeted gene repair.  相似文献   

7.
Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in?vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA?structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.  相似文献   

8.
Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.  相似文献   

9.
Barbour L  Xiao W 《Mutation research》2003,532(1-2):137-155
Replication-blocking lesions result in increased genomic instability by stalling replication forks. Eukaryotic cells appear to have evolved several surveillance and repair/bypass mechanisms to ensure that replication can be resumed at these stalled forks. In the yeast Saccharomyces cerevisiae, the helicases Srs2 and Sgs1 appear to play a role in controlling the processing and stabilization of stalled replication forks. These proteins appear to be tightly regulated throughout the cell cycle and play a direct role in DNA-damage checkpoints. This allows the cells to determine the best mechanism to reestablish replication at the stalled fork: by shuttling the lesion into the RAD6-dependent pathway that can lead to error-free or error-prone bypass; or by using homologous recombination. Under conditions where both the RAD6-dependent pathway and recombination are disabled, the cells can bypass the lesion using a novel damage avoidance mechanism that is controlled by Mgs1. Replication fork bypass processes appear to be highly conserved within eukaryotes, with homologs for SGS1 and MGS1 found in both Schizosaccharomyces pombe and mammalian cells.  相似文献   

10.
The rescue of stalled replication forks via a series of steps that include fork regression, template switching, and fork restoration often has been proposed as a major mechanism for accurately bypassing non-coding DNA lesions. Bacteriophage T4 encodes almost all of the proteins required for its own DNA replication, recombination, and repair. Both recombination and recombination repair in T4 rely on UvsX, a RecA-like recombinase. We show here that UvsX plus the T4-encoded helicase Dda suffice to rescue stalled T4 replication forks in vitro. This rescue is based on two sequential template-switching reactions that allow DNA replication to bypass a non-coding DNA lesion in a non-mutagenic manner.  相似文献   

11.
Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks   总被引:5,自引:0,他引:5  
Osman F  Whitby MC 《DNA Repair》2007,6(7):1004-1017
Cells of all living organisms have evolved complex mechanisms that serve to stabilise, repair and restart stalled, blocked and broken replication forks. The heterodimeric Mus81-Eme1/Mms4 structure-specific endonuclease appears to play an important role(s) in homologous recombination-mediated processing of such perturbed forks. This enzyme has been implicated in the cleavage of stalled and blocked replication forks to initiate recombination, as well as in the processing of recombination intermediates that result from repairing damaged forks. In this review we assess the biochemical and genetic evidence for the mitotic role of Mus81-Eme1/Mms4 at replication forks and in repairing post-replication DNA damage. Mus81 appears to act when replication is impeded by genotoxins or by impairment of the replication machinery, or when arrested replication forks are not adequately protected. We discuss how its action is regulated by the S-phase cell cycle checkpoint, depending on the nature of the stalled or damaged fork. We also present a new way in which Mus81 may limit crossing over during the repair of post-replication gaps, and explore Mus81's interplay with other components of the recombination machinery, including the RecQ helicases that also play important roles in processing replication and recombination intermediates.  相似文献   

12.
Across the evolutionary spectrum, living organisms depend on high-fidelity DNA replication and recombination mechanisms to maintain genome stability and thus to avoid mutation and disease. The repair of severe lesions in the DNA such as double-strand breaks or stalled replication forks requires the coordinated activities of both the homologous recombination (HR) and DNA replication machineries. Growing evidence indicates that so-called "accessory proteins" in both systems are essential for the effective coupling of recombination to replication which is necessary to restore genome integrity following severe DNA damage. In this article we review the major processes of homology-directed DNA repair (HDR), including the double Holliday Junction (dHJ), synthesis-dependent strand annealing (SDSA), break-induced replication (BIR), and error-free lesion bypass pathways. Each of these pathways involves the coupling of a HR event to DNA synthesis. We highlight two major classes of accessory proteins in recombination and replication that facilitate HDR: Recombination mediator proteins exemplified by T4 UvsY, Saccharomyces cerevisiae Rad52, and human BRCA2; and DNA helicases/translocases exemplified by T4 Gp41/Gp59, E. coli DnaB and PriA, and eukaryotic Mcm2-7, Rad54, and Mph1. We illustrate how these factors help to direct the flow of DNA and protein-DNA intermediates on the pathway from a double-strand break or stalled replication fork to a high-fidelity recombination-dependent replication apparatus that can accurately repair the damage.  相似文献   

13.
Chromosomal duplication faces many blocks to replication fork progression that could destabilize the genome and prove fatal if not overcome. Overcoming such blocks requires interplay between DNA replication, recombination and repair. The RecG protein of Escherichia coli promotes rescue of damaged forks by catalysing their unwinding and conversion to Holliday junctions. Subsequent processing of this structure allows repair or bypass of the fork block, enabling replication to resume without recourse to potentially mutagenic translesion synthesis or recombination. Such direct rescue of stalled forks might help safeguard genome integrity in all organisms.  相似文献   

14.
To rescue collapsed replication forks cells utilize homologous recombination (HR)-mediated mechanisms to avoid the induction of gross chromosomal abnormalities that would be generated by non-homologous end joining (NHEJ). Using DNA interstrand crosslinks as a replication barrier, we investigated how the Fanconi anemia (FA) pathway promotes HR at stalled replication forks. FA pathway inactivation results in Fanconi anemia, which is associated with a predisposition to cancer. FANCD2 monoubiquitination and assembly in subnuclear foci appear to be involved in TIP60 relocalization to the chromatin to acetylates histone H4K16 and prevents the binding of 53BP1 to its docking site, H4K20Me2. Thus, FA pathway loss-of-function results in accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which impair DNA resection at stalled replication fork-associated DNA breaks and impede HR. Consequently, DNA repair in FA cells proceeds through the NHEJ pathway, which is likely responsible for the accumulation of chromosome abnormalities. We demonstrate that the inhibition of NHEJ or deacetylase activity rescue HR in FA cells.  相似文献   

15.
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).  相似文献   

16.
Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/PolηKD cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.  相似文献   

17.
Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions that determine when each process is recruited to the arrested fork. We show here that at early times following UV irradiation, the recovery of DNA synthesis occurs through nucleotide excision repair of the lesion. In the absence of repair or when the repair capacity of the cell has been exceeded, translesion synthesis by polymerase V (Pol V) allows DNA synthesis to resume and is required to protect the arrested replication fork from degradation. Pol II and Pol IV do not contribute detectably to survival, mutagenesis, or restoration of DNA synthesis, suggesting that, in vivo, these polymerases are not functionally redundant with Pol V at UV-induced lesions. We discuss a model in which cells first use DNA repair to process replication-arresting UV lesions before resorting to mutagenic pathways such as translesion DNA synthesis to bypass these impediments to replication progression.  相似文献   

18.
It has long been appreciated that Cdc7 is an essential protein kinase that phosphorylates Mcm2-7 helicase subunits to promote initiation of DNA replication. In addition to its well-elucidated role in DNA replication, recent studies suggest that DDK is active in genotoxin-treated cells and may mediate aspects of the DNA damage response. However, specific role(s) of DDK and its effector targets in DNA damage signaling have not been defined. A recent study from our laboratories has identified the E3 ubiquitin ligase Rad18 as novel substrate of DDK in vitro and in human cells. Rad18 plays a central role in a post-replication DNA repair pathway termed ‘Trans-Lesion Synthesis’ (TLS) by promoting recruitment of DNA Polymerase eta (Polη) and other TLS polymerases to stalled replication forks. DDK-mediated Rad18 phosphorylation promotes Rad18-Polη complex formation and facilitates Rad18-dependent recruitment of Polη to stalled replication forks. The mechanisms that regulate Rad18-dependent TLS are incompletely understood. Our study provides the first demonstration of Rad18 regulation by direct phosphorylation and defines a novel mechanism for Rad18-dependent recruitment of TLS polymerases to stalled forks. This study also demonstrates a molecular basis for integration of TLS with S-phase progression via the essential Cdc7 kinase. These findings reveal unexpected mechanistic insights to the regulation of the TLS pathway and Polη recruitment.  相似文献   

19.
Targeted gene repair, a form of oligonucleotide-directed mutagenesis, employs end-modified single-stranded DNA oligonucleotides to mediate single-base changes in chromosomal DNA. In this work, we use a specific 72-mer to direct the repair of a mutated eGFP gene stably integrated in the genome of DLD-1 cells. Corrected cells express eGFP that can be identified and quantitated by FACS. The repair of this mutant gene is dependent on the presence of a specifically designed oligonucleotide and the frequency with which the mutation is reversed is affected by the induction of DNA damage. We used hydroxyurea, VP16 (etoposide), and thymidine to modulate the rate of DNA replication through the stalling of the replication forks or the introduction of lesions. Addition of hydroxyurea or VP16 before the electroporation of the oligonucleotide, results in an accumulation of double-strand breaks (DSB) whose repair is facilitated by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The addition of thymidine results in DNA damage within replication forks, damage that is repaired through the process of homologous recombination. Our data suggest that gene repair activity is elevated when DNA damage induces or activates the homologous recombination pathway.  相似文献   

20.
The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2−/− and RNF8−/− cells and HERC2−/−/RNF8−/− double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2−/− and RNF8−/− mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号