共查询到20条相似文献,搜索用时 0 毫秒
1.
Harrison LE Wang QM Studzinski GP 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1999,222(2):150-156
Butyrate, a short-chain fatty acid, has been reported to inhibit proliferation and stimulate differentiation in multiple cancer cell lines. Whereas the effects of butyrate on cellular differentiation are well documented, the relationship between butyrate-induced differentiation and its effect on cell cycle traverse is less well understood. The purpose of this study was to investigate the effects of butyrate on the regulatory proteins of the G2/M traverse in the Caco-2 colon cancer cell model. We demonstrated that the inhibition of proliferation and increased cellular differentiation after treatment of Caco-2 cells with butyrate were associated with a significant G2/M cell cycle block. Although protein levels of the major G2/M regulatory protein, p34cdc2, were unchanged, a decrease in p34cdc2 activity was noted. Despite this decrease in activity, the inhibitory tyrosine phosphorylation of p34cdc2 was decreased, suggesting that other factors are responsible for the decreased kinase activity. The reduced activity of p34cdc2 provides a possible mechanism for the accumulation of Caco-2 cells in the G2/M cell cycle compartment following exposure to butyrate. This cell system provides a new model for studies of G2/M cell cycle perturbations. 相似文献
2.
The normal functioning of p53 is thought to involve p53 target proteins. We have previously identified a cellular 35 kd protein associated with p53 and now report evidence identifying this 35 kd protein as p34cdc2, product of the cell cycle control cdc2 gene. The association between p53 and p34cdc2 was detected in SV3T3 and T3T3 cell lines, both expressing the wild-type p53 phenotype, and in 3T3tx cells, expressing 'mutant' p53 phenotype. Binding of the mutant p53 phenotype with p34cdc2 was greatly reduced relative to wild-type. Complexes of p53-p34cdc2 may represent inactivation or activation of either component. The p34cdc2 kinase functions at cell cycle control points and is necessary for entry and passage through mitosis. It also operates in G1 and is involved in the commitment of cells into the proliferative cycle. Since we were unable to detect p53-p34cdc2 complexes in mitotic cells we propose that the interaction between p53 and p34cdc2 may be functional in cell growth control, possibly to promote or to suppress cell proliferation. 相似文献
3.
Busch C Barton O Morgenstern E Götz C Günther J Noll A Montenarh M 《The international journal of biochemistry & cell biology》2007,39(9):1707-1713
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity and the sub-cellular localisation of cdc25C are regulated by phosphorylation. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures, which according to immunofluorescence analysis, electron microscopy as well as biochemical subfractionation, are proven to be the centrosomes. Since cyclin B and cdk1 are also located at the centrosomes, this subfraction of cdc25C might participate in the control of the onset of mitosis suggesting a further role for cdc25C at the centrosomes. 相似文献
4.
D M Gadbois J R Hamaguchi R A Swank E M Bradbury 《Biochemical and biophysical research communications》1992,184(1):80-85
We previously demonstrated that nontransformed cells arrest in the G1 phase of the cell cycle when treated with low concentrations (21 nM) of staurosporine (1). Both normal and transformed cells are blocked in the G2 phase of the cell cycle when treated with higher concentrations (160 nM) of staurosporine (1,2). In the present study, we show that staurosporine inhibits the activity of fractionated p34cdc2 and p34cdc2-like kinases with IC50 values of 4-5 nM. We propose that the G2 phase arrest in the cell cycle caused by staurosporine is due, at least in part, to the inhibition of the p34cdc2 kinases. 相似文献
5.
D K Ferris G A White D J Kelvin T D Copeland C C Li D L Longo 《Cell growth & differentiation》1991,2(7):343-349
The mammalian homologue of the yeast cdc2 gene encodes a 34-kilodalton serine/threonine kinase that is a subunit of M phase-promoting factor. Recent studies have shown that p34cdc2 is also a major tyrosine-phosphorylated protein in HeLa cells and that its phosphotyrosine content is cell cycle regulated and related to its kinase activity. Here, we show that cdc2 is physically associated with and phosphorylated in vitro by a highly specific tyrosine kinase. Tyrosine phosphorylation of cdc2 in vitro occurs at tyrosine 15, the same site that is phosphorylated in vivo. The association between the two kinases takes place in the cytosolic compartment and involves cyclin B-associated cdc2. Evidence is presented that a substantial fraction of cytosolic cdc2 is hypophosphorylated, whereas nuclear cdc2 is hyperphosphorylated. Finally, we show that the tyrosine kinase associated with cdc2 may be a 67-kilodalton protein and is distinct from src, abl, fms, and other previously reported tyrosine kinases. 相似文献
6.
The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. 总被引:1,自引:2,他引:1 下载免费PDF全文
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans. 相似文献
7.
Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. 总被引:50,自引:30,他引:50 下载免费PDF全文
Eukaryotic cell cycle progression requires the periodic activation and inactivation of a protein-serine/threonine kinase which in fission yeast is encoded by the cdc2+ gene. The activity of this gene product, p34cdc2, is controlled by numerous interactions with other proteins and by its phosphorylation state. In fission yeast, p34cdc2 is phosphorylated on two sites, one of which has been identified as Tyr15. Dephosphorylation of Tyr15 regulates the initiation of mitosis. To understand more completely the regulation of p34cdc2 kinase activity, we have identified the second site of phosphorylation as Thr167, a residue conserved amongst all p34cdc2 homologues. By analysing the phenotypes of cells expressing various position 167 mutations and performing in vitro experiments, we establish that Thr167 phosphorylation is required for p34cdc2 kinase activity at mitosis and is involved in the association of p34cdc2 with cyclin B. Dephosphorylation of Thr167 might also play a role in the exit from mitosis. 相似文献
8.
Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. 总被引:27,自引:15,他引:27 下载免费PDF全文
The cdc2 kinase is a key regulator of the eukaryotic cell cycle. The activity of its catalytic subunit, p34cdc2, is controlled by cell cycle dependent interactions with other proteins as well as by phosphorylation--dephosphorylation reactions. In this paper, we examine the phosphorylation state of chicken p34cdc2 at various stages of the cell cycle. By peptide mapping, we detect four major phosphopeptides in chicken p34cdc2; three phosphorylation sites are identified as threonine (Thr) 14, tyrosine (Tyr) 15 and serine (Ser) 277. Analysis of synchronized cells demonstrates that phosphorylation of all four sites is cell cycle regulated. Thr 14 and Tyr 15 are phosphorylated maximally during G2 phase but dephosphorylated abruptly at the G2/M transition, concomitant with activation of p34cdc2 kinase. This result suggests that phosphorylation of Thr 14 and/or Tyr 15 inhibits p34cdc2 kinase activity, in line with the location of these residues within the putative ATP binding site of the kinase. During M phase, p34cdc2 is also phosphorylated, but phosphorylation occurs on a threonine residue distinct from Thr 14. Finally, phosphorylation of Ser 277 peaks during G1 phase and drops markedly as cells progress through S phase, raising the possibility that this modification may contribute to control the proposed G1/S function of the vertebrate p34cdc2 kinase. 相似文献
9.
Reovirus-Induced ς1s-Dependent G2/M Phase Cell Cycle Arrest Is Associated with Inhibition of p34cdc2 总被引:1,自引:0,他引:1 下载免费PDF全文
Serotype 3 reoviruses inhibit cellular proliferation by inducing a G(2)/M phase cell cycle arrest. Reovirus-induced G(2)/M phase arrest requires the viral S1 gene-encoded sigma1s nonstructural protein. The G(2)-to-M transition represents a cell cycle checkpoint that is regulated by the kinase p34(cdc2). We now report that infection with serotype 3 reovirus strain Abney, but not serotype 1 reovirus strain Lang, is associated with inhibition and hyperphosphorylation of p34(cdc2). The sigma1s protein is necessary and sufficient for inhibitory phosphorylation of p34(cdc2), since a viral mutant lacking sigma1s fails to hyperphosphorylate p34(cdc2) and inducible expression of sigma1s is sufficient for p34(cdc2) hyperphosphorylation. These studies establish a mechanism by which reovirus can perturb cell cycle regulation. 相似文献
10.
Cholesterol starvation decreases p34(cdc2) kinase activity and arrests the cell cycle at G2. 总被引:3,自引:0,他引:3
J Martínez-Botas Y Suárez A J Ferruelo D Gómez-Coronado M A Lasuncion 《FASEB journal》1999,13(11):1359-1370
As a major component of mammalian cell plasma membranes, cholesterol is essential for cell growth. Accordingly, the restriction of cholesterol provision has been shown to result in cell proliferation inhibition. We explored the potential regulatory role of cholesterol on cell cycle progression. MOLT-4 and HL-60 cell lines were cultured in a cholesterol-deficient medium and simultaneously exposed to SKF 104976, which is a specific inhibitor of lanosterol 14-alpha demethylase. Through HPLC analyses with on-line radioactivity detection, we found that SKF 104976 efficiently blocked the [(14)C]-acetate incorporation into cholesterol, resulting in an accumulation of lanosterol and dihydrolanosterol, without affecting the synthesis of mevalonic acid. The inhibitor also produced a rapid and intense inhibition of cell proliferation (IC(50) = 0.1 microM), as assessed by both [(3)H]-thymidine incorporation into DNA and cell counting. Flow cytometry and morphological examination showed that treatment with SKF 104976 for 48 h or longer resulted in the accumulation of cells specifically at G2 phase, whereas both the G1 traversal and the transition through S were unaffected. The G2 arrest was accompanied by an increase in the hyperphosphorylated form of p34(cdc2) and a reduction of its activity, as determined by assaying the H1 histone phosphorylating activity of p34(cdc2) immunoprecipitates. The persistent deficiency of cholesterol induced apoptosis. However, supplementing the medium with cholesterol, either in the form of LDL or free cholesterol dissolved in ethanol, completely abolished these effects, whereas mevalonate was ineffective. Caffeine, which abrogates the G2 checkpoint by preventing p34(cdc2) phosphorylation, reduced the accumulation in G2 when added to cultures containing cells on transit to G2, but was ineffective in cells arrested at G2 by sustained cholesterol starvation. Cells arrested in G2, however, were still viable and responded to cholesterol provision by activating p34(cdc2) and resuming the cell cycle. We conclude that in both lymphoblastoid and promyelocytic cells, cholesterol availability governs the G2 traversal, probably by affecting p34(cdc2) activity. 相似文献
11.
p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. 总被引:24,自引:18,他引:24 下载免费PDF全文
We have investigated the mechanism by which fission yeast p80cdc25 induces mitosis. The in vivo active domain was localized to the C-terminal 23 kDa of p80cdc25. This domain produced as a bacterial fusion protein (GST-cdc25) caused tyrosyl dephosphorylation and activation of immunoprecipitated p34cdc2. Furthermore, GST-cdc25 dephosphorylated both para-nitrophenyl-phosphate (pNPP) and casein phosphorylated on serine in vitro. Reaction requirements and inhibitor sensitivities were the same as those of phosphotyrosine phosphatases (PTPases). Analysis of cdc25 C-terminal domains from a variety of species revealed a conserved motif having critical residues present at the active site of PTPases. Mutation of the cdc25 Cys480 codon, corresponding to an essential cysteine in the active site of PTPases, abolished the phosphatase activity of GST-cdc25. These data indicate that cdc25 proteins define a novel subclass of eukaryotic PTPases, and strongly argue that cdc25 proteins directly dephosphorylate and activate p34cdc2 kinase to induce M-phase. 相似文献
12.
R Zhou I Daar D K Ferris G White R S Paules G Vande Woude 《Molecular and cellular biology》1992,12(8):3583-3589
We investigated the possible interactions between pp39mos and p34cdc2 kinase in NIH 3T3 cells transformed by c-mosxe. pp39mos is coprecipitated with p34cdc2 when using either anti-PSTAIR antibody or p13suc1-Sepharose beads. Likewise, p34cdc2 is coprecipitated with pp39mos when using anti-mos antibody. However, pp39mos was not present in histone H1 kinase-active p34cdc2 complexes precipitated with anti-p34cdc2 C-terminal peptide antibody even during metaphase of the cell cycle. The molar ratio of p34 to pp39mos in the p13suc1 complex is approximately 2:1. Consistent with the tight association between pp39mos and tubulin, tubulin was also present in equivalent amounts with pp39mos and p34 in the p13suc1 complex. This pp39mos-p34cdc2-tubulin complex may be important in transformation by the mos oncogene. 相似文献
13.
Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. 总被引:15,自引:9,他引:15 下载免费PDF全文
T Lorca J C Labb A Devault D Fesquet J P Capony J C Cavadore F Le Bouffant M Dore 《The EMBO journal》1992,11(7):2381-2390
Exit from metaphase of the cell cycle requires inactivation of MPF, a stoichiometric complex between the cdc2 catalytic and the cyclin B regulatory subunits, as well as that of cyclin A-cdc2 kinase. Inactivation of both complexes depends on proteolytic degradation of the cyclin subunit, yet cyclin proteolysis is not sufficient to inactivate the H1 kinase activity of cdc2. Genetic evidence strongly suggests that type 1 phosphatase plays a key role in the metaphase-anaphase transition of the cell cycle. Here we report that inhibition of both type 1 and type 2A phosphatases by okadaic acid allows cyclin degradation to occur, but prevents cdc2 kinase inactivation. Complete inhibition of type 2A phosphatase alone is not sufficient to prevent cdc2 kinase inactivation following cyclin proteolysis. We show further that residue 161 of cdc2 is phosphorylated in active cyclin A or cyclin B complexes at metaphase, whilst unassociated cdc2 is not phosphorylated. Proteolysis of cyclin releases a free cdc2 subunit, which subsequently undergoes dephosphorylation and then migrates more slowly than its Thr161 phosphorylated counterpart in Laemmli gels. Removal of phosphothreonine 161 requires cyclin proteolysis. However, it does not occur even after cyclin proteolysis, when both type 1 and type 2A phosphatases are inhibited. We conclude that both cyclin degradation and dephosphorylation of Thr161 on cdc2, catalysed at least in part by type 1 phosphatase, are required to inactivate either cyclin B- or cyclin A-cdc2 kinases and thus for cells to exit from M phase. 相似文献
14.
Transforming growth factor beta 1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. 总被引:21,自引:8,他引:21 下载免费PDF全文
Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition. 相似文献
15.
p73 is regulated by phosphorylation at the G2/M transition 总被引:6,自引:0,他引:6
Fulco M Costanzo A Merlo P Mangiacasale R Strano S Blandino G Balsano C Lavia P Levrero M 《The Journal of biological chemistry》2003,278(49):49196-49202
16.
Cellular differentiation of neoplastic cells after exposure to 1, 25-dihydroxyvitamin D(3) (1,25 D(3)) is accompanied by altered cell cycle regulation. In previous studies, blocks in both G(1)/S and G(2)/M checkpoints have been observed in 1,25D(3)-treated HL60 cells, but the mechanism of the 1,25D(3)-induced G(2)/M block has not been previously reported. In this study, we show by cell cycle analysis, using bromodeoxyuridine pulse-chase labeling, that the G(2)/M block in 1,25D(3)-treated HL60 cells is incomplete. We also demonstrate that although the 1,25D(3)-treated cells exhibit elevated levels of cyclin B1, Cdc25C, and Cdk7, which are positive regulators of the G(2)/M traverse, these cells have decreased protein levels of p34(cdc2) and decreased p34(cdc2) kinase activity. This provides potential mechanisms for the observed accumulation of cells in the G(2) cell cycle compartment and occasional polyploidization following treatment of HL60 cells with 1,25D(3). The data also suggest that the ability of some cells to traverse this block may be the result of cellular compensatory mechanisms responding to decreased p34(cdc2) activity by increasing the levels of other regulators of the G(2) traverse, such as cyclin B1, Cdc25C, and Cdk7. 相似文献
17.
B G Gabrielli L M Roy J Gautier M Philippe J L Maller 《The Journal of biological chemistry》1992,267(3):1969-1975
The Eg1 gene in Xenopus laevis is related in sequence to the cdc2+ gene. We show here that the Eg1 gene product (cdk2) possesses histone H1 protein kinase activity and binds to PSTAIR antibodies as well as to Sepharose beads linked to the 13-kDa product of the suc 1 gene (p13suc1). Eg1 protein kinase is active only in an Mr approximately 200,000 complex with other proteins but is not associated with any of the three known Xenopus mitotic cyclins or with any newly synthesized protein in egg extracts that exhibit cell cycle oscillations in vitro. The protein kinase activity of Eg1 oscillates in the mitotic cell cycle, being high in M-phase and low in interphase. Hyperactivation of cdc2 kinase by the addition of cyclin A has no effect on the activity or oscillatory behavior of Eg1. Inhibition of cdc2 kinase activation by emetine or RNase treatment of oscillating extracts does not inhibit the activation of Eg1 but does block deactivation normally seen during exit from mitosis. These results indicate that Eg1 is regulated by a cell cycle clock independently of cyclin and cdc2 kinase. 相似文献
18.
D W Litchfield B Lüscher F J Lozeman R N Eisenman E G Krebs 《The Journal of biological chemistry》1992,267(20):13943-13951
In human epidermal carcinoma A431 cells, the beta subunit of casein kinase II is phosphorylated at an autophosphorylation site and at serine 209 which can be phosphorylated in vitro by p34cdc2 (Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J., and Krebs, E. G. (1991) J. Biol. Chem. 266, 20380-20389). Given the importance of p34cdc2 in the regulation of cell cycle events, we were interested in examining the phosphorylation of casein kinase II during different stages of the cell cycle. In this study it is demonstrated that the extent of phosphorylation of serine 209 in the beta subunit is significantly increased relative to phosphorylation of the autophosphorylation site when chicken bursal lymphoma BK3A cells are arrested at mitosis by nocodazole treatment. This result suggests that serine 209 is a likely physiological target for p34cdc2. In addition, the alpha subunit of casein kinase II also undergoes dramatic phosphorylation with an associated alteration in its electrophoretic mobility when BK3A cells or human Jurkat cells are arrested with nocodazole. Phosphopeptide mapping studies indicate that p34cdc2 can phosphorylate in vitro the same peptides on the alpha subunit that are phosphorylated in cells arrested at mitosis. These phosphorylation sites were localized to serine and threonine residues in the carboxyl-terminal domain of alpha. Taken together, the results of this study indicate that casein kinase II is a probable physiological substrate for p34cdc2 and suggest that its functional properties could be affected in a cell cycle-dependent manner. 相似文献
19.
Requirement for p34cdc2 kinase is restricted to mitosis in the mammalian cdc2 mutant FT210 下载免费PDF全文
J R Hamaguchi R A Tobey J Pines H A Crissman T Hunter E M Bradbury 《The Journal of cell biology》1992,117(5):1041-1053
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells. 相似文献