共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the kinetic effects of substrate, activator, and inhibitors on (1–3) glucan synthase activity ofNeurospora crassa, we propose the following reaction sequence for glucan synthesis. First, enzyme binds laminaribiose (activator), forming an enzyme-laminaribiose complex. Substrate (UDP-Glc) binding follows. UDP-Glc is hydrolyzed, releasing UDP, while the glucose residue remains associated with glucan synthase. The resulting enzyme-activator-glucose complex binds another UDP-Glc. It is likely that linear competitive inhibitors act at this step. Initial polymerization occurs, forming a disaccharide (which remains bound to glucan synthase) and UDP, which is released. The resulting enzyme-activator-disaccharide binds another UDP-Glc, and Glc is covalently added; further polymerization occurs by addition of Glc (from UDP-Glc) to the growing glucan chain, which remains associated with glucan synthase. Uncompetitive inhibitors are likely to affect enzyme activity at this step. 相似文献
2.
A number of mutants ofNeurospora crassa (sor-1, sor-3, sor-4, sor-5, sor-6, sor-15, sor-T9, andpatch) were found to be resistant to the growth-inhibiting effect of sorbose.(1–3)-Glucan synthase activity from each strain was found to be as sensitive to sorbose as wild-type enzyme activity. Four of these strains (sor-1, sor-4, sor-5, sor-T9) had altered sorbose transport; the remaining strains tested had normal sorbose transport. All of these strains (except forsor-3) were found to metabolize sorbose to glucose (and other compounds). This may explain their sorbose resistance. 相似文献
3.
《Experimental mycology》1984,8(4):320-333
β(1–3)Glucan synthase activity ofNeurospora crassa was inhibited by a number of compounds. Uridine nucleotides were linear competitive inhibitors of enzyme activity. Hill plots for the competitive inhibitors and for the substrate (UDP-glucose) resulted in straight lines with Hill numbers near unity suggesting a single substrate binding site. Tunicamycin, dolichol, or dolichol phosphate did not affect enzyme activity and a lipid-linked intermediate was not detected. Sorbose, gluconolactone, echinocandin B, and papulacandin B were uncompetitive inhibitors. Mixed inhibitor studies revealed that the binding of one uncompetitive inhibitor blocked completely the binding of each of the other uncompetitive inhibitors. 相似文献
4.
-Linked disaccharides (laminaribiose and cellobiose) stimulated(1–3)glucan synthase activity ofNeurospora crassa by reducing the Km app for the substrate while not changing the Vmax. Laminaribiose and cellobiose werelinear activators with a Ka app of 0.32 mM and Ka app of 1.7 mM, respectively. Laminaribiose was not found to be incorporated into product, i.e., did not act as a primer covalently bound to product. 相似文献
5.
《Experimental mycology》1993,17(2):130-141
Awald, P., Zugel, M., Monks, C., Frost, D., and Selitrennikoff, C. P. 1993. Purification of 1,3-β-glucan synthase from Neurospora crassa by product entrapment. Experimental Mycology, 17, 130-141. 1,3-β-Glucan synthase activity of the ascomycete Neurospora crassa was purified ∼700-fold from hyphae. Hyphae were disrupted by bead-beating, and membrane-enriched fractions were obtained by high-speed centrifugation. Membranes were treated with (3-[(3-cholamidopropyl)dimethyl-ammoniol]I-propanesulfonate) and octyl-β-D-glucoside to solubilize enzyme activity. Soluble glucan synthase activity was incubated with substrate (UDP-glucose) and purified by centrifugation of enzyme associated with glucan (product entrapment). Purification was specific for UDP-glucose, the optimal concentration being 0.25 mM; no other nucleotide diphosphate sugar was able to significantly product-entrap enzyme activity. Partially purified enzyme activity formed β(1,3)-linked glucan, had a mean specific activity of 1900 nmol glucose incorporated/min/mg protein, a Km,app of 0.7 mM, and a Vmax of 0.5 nmol glucose incorporated/min. Separation of partially purified enzyme activity by SDS-PAGE showed a number of proteins copurifying with enzyme activity; computer analysis of digitized gel images revealed that proteins of 21, 25, 28, 45, 53, and 78 kDa were enriched. These results reinforce the view that 1,3-β-glucan synthase activity of fungi is a multimeric enzyme. 相似文献
6.
《Experimental mycology》1989,13(2):129-139
1,3-β-d-Glucan synthase activity ofNeurospora crassa was rendered soluble by treatment of crude protoplast lysates with 0.1% 3-[3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and 0.5% octylglucoside in 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer containing 5 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 10 mM sodium fluoride, 1 mM dithiothreitol, 200 mM inorganic phosphate, 10 μM GTP, and 600 mM glycerol. Approximately 50% of enzyme activity was solubilized; soluble enzyme activity was purified 5.6-fold with a net 38% recovery by sucrose gradient density sedimentation. Partially purified enzyme activity had a half-life of 60 ± 10 h at 4°C, aKm,app of 0.75 ± 0.05 mM, and a Vmax,app of 35 ± 1 enzyme units/mg protein. 相似文献
7.
A domain of epiglucan was synthesized by beta-glucosidases. Two beta-glucosidases, an extracellular beta-glucosidase derived from Sclerotinia sclerotiorum grown on xylose, and a commercial lyophilized preparation of beta-glucosidase from Aspergillus niger, were used to synthesize gluco-oligosaccharides from cellobiose and, specially, beta-(1-6) branched beta-(1-3) gluco-oligosaccharides, corresponding to the structure of epiglucan. Gentiobiose, cellotriose, cellotetraose, beta-Glc-(1-3)-beta-Glc-(1-4)-Glc, beta-Glc-(1-6)-beta-Glc-(1-4)-Glc and beta-Glc-(1-6)-beta-Glc-(1-3)-Glc were synthesized from cellobiose by both enzymes. The latter compound was preferentially synthesized by the beta-glycosidase from Sclerotinia sclerotiorum. Under the best conditions, only 7 g l(-1) of beta-Glc-(1-6)-beta-Glc-(1-3)-Glc was synthesized by the beta-glycosidase from Aspergillus niger compared to 20 g l(-1) synthesized with beta-glycosidase from Sclerotinia sclerotiorum. 相似文献
8.
9.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy. 相似文献
10.
The tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethylO-α-l-fucopyranosyl-(1–3)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1–3)-O-β-d-galactopyranosyl-(1–4)-β-d-glucopyranoside was synthesized from thioglycoside intermediates. The key step was a methyl triflate promoted glycosidation of a lactose-derived 3′,4′-diol with a disaccharide thioglycoside to give a β(1–3)-linked tetrasaccharide derivative in 67% yield. 相似文献
11.
Inner membranes of Bradyrhizobium japonicum strain USDA 110 produced in vitro soluble and insoluble -(1–3),-(1–6) glucans. The reaction proceeded through a 90 kDa inner membrane intermediate protein; used UDP-glucose as sugar donor and required Mg2+. Gel chromatography of soluble glucans resolved a cyclic -(1–3) glucan with a degree of polymerization of eleven from a family of -(1–3),-(1–6) glucans with variable degree of polymerization higher than eleven. Bradyrhizobium strains BR4406 and BR8404 isolated from tree legume nodules in Southeast Brazil produce -(1–3),-(1–6) glucans very similar to that of B. japonicum. A 100 kDa protein was identified in these strains as intermediates in the synthesis of these glucans. Inner membranes of B. japonicum USDA110, B. japonicum I17, and Bradyrhizobium strains BR4406 and BR8404 incubated with UDP-glucose were unable to synthesize -(1–2) glucan and lacked the 235 kDa intermediate protein known to be involved in the synthesis of -(1–2) glucan in Agrobacterium tumefaciens, Rhizobium meliloti and Rhizobium loti.Abbreviations EPS=
exopolysaccharides
- CPS=
capsular polysaccharides
- LPS=
lipopolysaccharides
- AMA=
Yeast extract-mannitol medium
- TY=
tryptone-yeast extract
- PMSF=
phenyl methyl sulfonil fluoride
相似文献
相似文献
12.
Tomomi Izumikawa Ban Sato Tadahisa Mikami Jun-ichi Tamura Michihiro Igarashi Hiroshi Kitagawa 《The Journal of biological chemistry》2015,290(9):5438-5448
A deficiency in chondroitin N-acetylgalactosaminyltransferase-1 (ChGn-1) was previously shown to reduce the number of chondroitin sulfate (CS) chains, leading to skeletal dysplasias in mice, suggesting that ChGn-1 regulates the number of CS chains for normal cartilage development. Recently, we demonstrated that 2-phosphoxylose phosphatase (XYLP) regulates the number of CS chains by dephosphorylating the Xyl residue in the glycosaminoglycan-protein linkage region of proteoglycans. However, the relationship between ChGn-1 and XYLP in controlling the number of CS chains is not clear. In this study, we for the first time detected a phosphorylated tetrasaccharide linkage structure, GlcUAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate), in ChGn-1−/− growth plate cartilage but not in ChGn-2−/− or wild-type growth plate cartilage. In contrast, the truncated linkage tetrasaccharide GlcUAβ1–3Galβ1–3Galβ1–4Xyl was detected in wild-type, ChGn-1−/−, and ChGn-2−/− growth plate cartilage. Consistent with the findings, ChGn-1 preferentially transferred N-acetylgalactosamine to the phosphorylated tetrasaccharide linkage in vitro. Moreover, ChGn-1 and XYLP interacted with each other, and ChGn-1-mediated addition of N-acetylgalactosamine was accompanied by rapid XYLP-dependent dephosphorylation during formation of the CS linkage region. Taken together, we conclude that the phosphorylated tetrasaccharide linkage is the preferred substrate for ChGn-1 and that ChGn-1 and XYLP cooperatively regulate the number of CS chains in growth plate cartilage. 相似文献
13.
Karina Affeldt Guterres Caroline Bohnen de Matos Luiza Da Gama Osório Isabel Duarte Schuch Marlete Brum Cleff 《Mycopathologia》2014,177(3-4):217-221
Sporotrichosis, caused by the Sporothrix schenckii fungal complex, is a zoonotic mycosis distributed worldwide. Itraconazole is the treatment of choice for domestic animals although some fungal isolates have shown resistance to this drug. The objective of this study was to report, for the first time, the use of (1–3) β-glucan along with itraconazole in the treatment of a canine with sporotrichosis caused by Sporothrix brasiliensis. The animal had ulcerated and crusted lesions, especially on the nasal planum. Clinical samples were collected for a complete blood count, cytological analysis of the lesion, and fungal culture. Based on the results of the laboratory examination, and after the fungal culture, antibiotic therapy and treatment with itraconazole were initiated. Two additional fungal cultures were performed, which were positive. After 7 months of the animal treatment with itraconazole, the S. brasiliensis culture was still positive, so that the itraconazole was associated with (1–3) β-glucan. After four weekly applications of glucan, the complete elimination of the fungus was observed based on the fungal culture negative results. The results show, therefore, that (1–3) β-glucan with itraconazole promoted the case resolution, and it may be considered a promising alternative for the treatment of sporotrichosis in cases of resistance to conventional therapy. 相似文献
14.
Two water-soluble polymers, carrying 0.24 meq g–1 of lactosyl-(1-1)-sphingosine (7) and 0.13 meq g–1 of lactosyl-(1-3)-sphingosine (8) were prepared. The polymers served as acceptors in the -(2-3)-sialyltransferase reaction (up to 55.3 and 38.5% transfer yields, respectively). Subsequent photolysis, released compounds 11 (lyso-GM3) and 12 (lyso-GM3 analog), respectively; acylation and chromatography afforded (5-acetamido-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosylonic acid)-(2-3)--D-galactopyranosyl-(1-4)--D-glucopyranosyl-(1-1)-(2S, 3R, 4E)-2-octadecanoylamino-4-octadecene-1,3-diol (13, GM3) and (5-acetamido-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosylonic acid)-(2-3)--D-galactopyranosyl-(1-4)--D-glucopyranosyl-(1-3)-(2S, 3R, 4E)-2-octadecanoylamino-4-octadecene-1,3-diol (14, GM3 analogue), respectively, thus presenting a route to glycosphingolipids possessing the unusual glycosyl-(1-3)-spingosine linkage. 相似文献
15.
《Bioscience, biotechnology, and biochemistry》2013,77(6):1378-1381
A gene (neg1) encoding an endo-1,6-β-D-glucanase from Neurospora crassa was cloned. The putative neg1 was 1443-bp long and encoded a mature endo-1,6-β-D-glucanase protein of 463 amino acids and signal peptide of 17 amino acids. The purified recombinant protein (Neg1) obtained from Escherichia coli showed 1,6-β-D-glucanase activity. No genes similar in sequence were found in yeasts and fungi. 相似文献
16.
17.
18.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy. 相似文献
19.
β-Glucan hydrolases from Aspergillus niger. Isolation of a β-(1→4)-glucan hydrolase and some properties of the β-(1→3)-glucan-hydrolase components 下载免费PDF全文
1. The components of an enzyme preparation from Aspergillus niger, which hydrolysed substrates containing beta-(1-->3)- and beta-(1-->4)-glucosidic linkages, were separated by calcium phosphate and Dowex 1 column chromatography. 2. The hydrolytic activity of each fraction from both types of column towards laminaribiose, laminarin, carboxymethylpachyman, pachydextrins, salicin, cellobiose, cellopentaose and swollen cellulose was tested. 3. The activity towards the beta-(1-->3)-glucosidic substrates was found in three well-separated groups of fractions. The differences in action pattern of these groups is discussed. 4. Preparative-scale chromatography that enabled the separation of a beta-(1-->4)-glucan-glucanohydrolase component substantially free of activity towards beta-(1-->3)-glucosidic substrates is described. Residual beta-(1-->3)-glucan-hydrolase activity was removed by adsorption on to insoluble laminarin at pH3.5. 相似文献
20.
Abstract The total potential energy including nonbondedJuntorsional and hydrogen bond contributions has been computed for pustulan, a (1?6) linked β-D-glucan polysaccharide, as a function of rotational angles φ, ψ, and ω The (φ, ψ, ω)-space contains many local minima and at least three distinct deep minima. Two minima at (φ, ψ, ω)=(25°,190°,gg) and (φ, ψ, ω)=(65°,150°,gg) of almost equal energies have helical parameters (n=5.2, A=1.0Å) and (n=3.2, h= 1.5Å), respectively. A third minimum at (φ, ψ, ω)=(40°,70°gt) leads to an extended zig-zag structure (n=2.2, h=2.2Å). Energy maps obtained for gentiobiose, the disaccharide of pustulan, also reveal many local minima and the small energy differences among them indicate that gentiobiose is extremely flexible. Gentiodextrins, a family of cyclic molecules of (l?6)-β-D- glucose residues, were also studied. Conformations free from steric hindrance were found for cyclic molecules with three to six glucose residues. 相似文献