首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a wide range of hydrostatic pressures (from 50 to 1000 kg/cm2) have been investigated on the spontaneous potential difference (PD), the short-circuit current (SCC) and the activity of the membrane ATPases of the isolated abdominal skin from the frog Rana temporaria L. Two types of variations in PD are induced by pressure changes: short and transient potential variations which appear to be related to the pressure change (compression and decompression) and lasting variations which persist as long as pressure is applied and whose nature appears to be related to the pressure magnitude. Long-lasting potential changes have particularly been investigated. At pressures lower than 500 kg/cm2, the skin potential increases while a pressure over 500-600 kg/cm2 induces a depolarization. Both variations consecutively occur at 500 +/- 100 kg/cm2. These effects of pressure have been shown to be reversible up to about 800 kg/cm2. The question of the origin of the potential changes is discussed and it is proposed that the lasting hyperpolarization results from an effect on the passive permeabilities to Na+, K+ and Cl- ions inducing in turm a secondary readjustment (stimulation) of the Na+ active transport while the depolarization at high pressures reflects a direct inhibition of the Na+ pump. These interpretations are supported by experimental data on the effects of pressure on the short-circuit current and on the activity of the skin (Na+ + K+) ATPase.  相似文献   

2.
Inhibition of calcium ATPase by phencyclidine in rat brain   总被引:2,自引:0,他引:2  
Pande  M.  Cameron  J.A.  Vig  P.J.S.  Ali  S.F.  Desaiah  D. 《Molecular and cellular biochemistry》1999,194(1-2):173-177
Phencyclidine (PCP) is a potent psychotomimetic drug of abuse and has profound effect on the functioning of the central nervous system (CNS). Many of the CNS functions are known to be mediated by calcium (Ca2+). In the present study we have investigated the effects of PCP on Ca2+ ATPase activity in rat brain both in vitro and in vivo. For in vitro studies, synaptic membrane fractions prepared from normal rat brain were incubated with PCP at different concentrations (25-100 M) before the addition of substrate. For n vivo studies, rats were treated with a single moderate dose of PCP (10 mg/kg, IP) and animals were sacrificed at 1,2, 6 and 12 h after treatment. Ca2+ ATPase activity in synaptic membrane fractions was assayed by estimation of inorganic phosphate. PCP inhibited the Ca2+ ATPase in vitro in a concentration dependent manner with significant effect at 50 and 100 M. A significant time-dependent reduction of the Ca2+ ATPase activity was evident in vivo. As early as 2 h after the treatment of rats with PCP the ATPase activity was significantly reduced. The reduction of Ca2+ ATPase observed even at 12 h after treatment suggesting a prolonged presence of the drug in the brain tissue. Further, kinetic studies in vitro indicated PCP to be a competitive inhibitor of Ca2+ ATPase with respect to the substrate, ATP. The present findings indicate that PCP inhibits synaptic membrane Ca2+ ATPase thus altering cellular Ca2+ homeostasis in CNS which may partially explain the pharmacological effects of the drug and/or its neurotoxicity.  相似文献   

3.
In a previous paper [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227] we presented a kinetic model for the activity of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Here we extend the model to account for the effects on ATPase activity of Mg2+, cations and anions. We find that Mg2+ concentrations in the millimolar range inhibit ATPase activity, which we attribute to competition between Mg2+ and MgATP for binding to the nucleotide-binding site on the E1 and E2 conformations of the ATPase and on the phosphorylated forms of the ATPase. Competition is also suggested between Mg2+ and MgADP for binding to the phosphorylated form of the ATPase. ATPase activity is increased by low concentrations of K+, Na+ and NH4+, but inhibited by higher concentrations. It is proposed that these effects follow from an increase in the rate of dephosphorylation but a decrease in the rate of the conformational transition E1'PCa2-E2'PCa2 with increasing cation concentration. Li+ and choline+ decrease ATPase activity. Anions also decrease ATPase activity, the effects of I- and SCN- being more marked than that of Cl-. These effects are attributed to binding at the nucleotide-binding site, with a decrease in binding affinity and an increase in 'off' rate constant for the nucleotide.  相似文献   

4.
The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2,450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.  相似文献   

5.
The presence of a cation inhibitory site on the dephosphoform of the H+, K+ -ATPase was confirmed by comparing the effects of K+ and NH4+ on overall activity and on phosphorylation and dephosphorylation. Inhibition of ATPase activity was pronounced at high cation/ATP ratios, but NH4+ was much less effective. At 60 mM cation, although the ATPase activity was greater in the presence of NH4+ (17.1 mumol/mg.h) as compared to K+ (5.1 mumol/mg.h), dephosphorylation of preformed phosphoenzyme was faster with K+ (2101 min-1) than with NH4+ (1401 min-1). Increasing K+ concentrations at the cytosolic face of the enzyme, at constant ATP, decreased the rate of phosphorylation from 1343 to 360 min-1 at 25 mM K+. Increasing ATP concentrations in the presence of constant K+ concentrations accelerated ATPase activity and increased the steady-state phosphoenzyme level. Therefore, inhibition by cations was due to cation stabilization of a dephospho form of the enzyme at a cytosolically accessible cation-binding site. ATP promoted cation dissociation from this site. In ion-permeable vesicles, increasing K+ concentrations, at constant ATP, activated and then inhibited ATPase activity, with a K0.5(I) of 22 mM. In intact, ion-impermeable inside-out vesicles, in the presence of valinomycin, ATPase activity increased up to 175 mM K+. Collapse of this potential by the addition of the electrogenic protonophore 3,3',4', 5-tetrachlorosalicylanilide restored the K+ inhibition of ATPase activity. Thus, the cation inhibition of the ATPase activity appears to be voltage-sensitive; and hence, its connection to the voltage sensitivity of acid secretion demonstrated in intact gastric mucosa is discussed.  相似文献   

6.
Incubation of basolateral membranes obtained from control rat kidney cortex in the presence of atrial natriuretic peptide (ANP) increased (Ca2+ + Mg2+) ATPase activity in a dose-dependent manner. Such response was absent in membranes obtained from animals made diabetic by streptozotocin injection (65 mg/kg, iv). The differential responses in the ATPase activity were not due to changes in the affinity for Ca2+ and insulin treatment in the diabetic animals completely reversed the situation. Our data suggest that ANP may mediate its cellular effects in part by changes in cellular Ca2+ homeostasis in kidney cortex and the lack of response of (Ca2+ + Mg2+) ATPase to ANP in chronic diabetes may contribute to the development of intracellular Ca2+ overload and nephropathy.  相似文献   

7.
In vitro effects of aspirin and paracetamol at the doses 200, 400, 600, 800 nmole/mg protein on ATPases activity were studied in the cerebrum and cerebellum of human fetus covering the age range from 10 weeks to 32 weeks of gestation. Both aspirin and paracetamol inhibit Na+K+ ATPase and Mg2+ ATPase in a dose dependent manner. The inhibition of Na+K+ ATPase and Mg2+ ATPase activity which may affect the release and uptake of biogenic amines in CNS, hinders the maturation of human fetal brain.  相似文献   

8.
The effects of beta-adrenergic blocking agents, timolol and atenolol (1-1000 microM), were studied on rat heart sarcolemmal ATPase and Ca2+ binding activities. Timolol, unlike atenolol, increased both Ca2+-stimulated ATPase and ATP-dependent Ca2+ binding; the maximal effects were seen at 1 microM concentration of timolol. Both timolol and atenolol did not alter the sarcolemmal Mg2+ ATPase and nonspecific Ca2+ binding activities. Sarcolemmal Ca2+-stimulated ATPase was also activated by concanavalin A (6-66 micrograms/mL) which is known to alter membrane fluidity; however, Mg2+ ATPase was unaffected by this agent. These results indicate that timolol may stimulate Ca2+ pump activity in heart sarcolemma by changing membrane fluidity in a manner similar to that of concanavalin A.  相似文献   

9.
Hexachlorocyclohexanes have been shown to inhibit the (Ca2+ + Mg2+)-ATPase of muscle sarcoplasmic reticulum reconstituted into bilayers of dioleoylphosphatidylcholine. However, for the ATPase reconstituted into bilayers of dimyristoleoylphosphatidylcholine, a pattern of activation at low concentration followed by inhibition at higher concentration is seen for hexachlorocyclohexanes and alkanes such as decane and hexadecane. The ATPase in sarcoplasmic reticulum vesicles is also inhibited by the hexachlorocyclohexanes. The effects of hexachlorocyclohexanes on activity are largely independent of concentrations of Ca2+ and ATP. Inhibition is more marked at lower temperatures. The hexachlorocyclohexanes quench the tryptophan fluorescence of the ATPase, and the quenching can be used to obtain partition coefficients into the membrane system. As for simple lipid bilayers, partition exhibits a negative temperature coefficient. Binding is related to effects on ATPase activity.  相似文献   

10.
Diabetes is characterized by depressed cardiac functional properties attributed to Ca2+-activated ATPase activity. In contrast, endurance swimming enhances the cardiac functional properties and Ca2+-activated myofibril ATPase. Thus, the purpose of this study was to observe if the changes associated with experimental diabetes can be ameliorated with training. Diabetes was induced with a single i.v. injection of streptozotocin (60 mg/kg). Blood and urine glucose concentrations were 802 +/- 44 and 6965 +/- 617 mg/dL, respectively. The training control and training diabetic animals were made to swim (+/- 2% body weight) 4 days/week for 8 weeks. Cardiac myofibril, at 10 microM free Ca2+ concentration was reduced by 54% in the sedentary diabetics compared with sedentary control animals (p less than 0.05). Swim training enhanced the Ca2+-activated myofibril ATPase activities for the normal animals. The diabetic animals, which swam for 8 weeks, had further reduced their Ca2+-activated myofibril ATPase activity when compared with sedentary diabetics (p less than 0.05). Similarly, the Mg2+-stimulated myofibril ATPase activity was depressed by 31% in diabetics following endurance swimming. It is concluded that the depressed Ca2+-activated myofibril ATPase activity of diabetic hearts is not reversible with endurance swimming.  相似文献   

11.
DPPC:DPPE-proteoliposomes (in which the enzyme is inside-out oriented) and DLOPC:DLOPE-proteoliposomes (in which the enzyme is only 40% inside-out oriented) is an excellent model for studying the selective effect of the reactive oxygen species, produced by the photo-activation of Rose Bengal. Both proteoliposomes used, when submitted to photo-irradiation with laser using 1200 mJ/cm2 energy dose, in the absence of the Rose Bengal, did not shown any effect in the ATPase activity and in the integrity of its systems. Also, no effect was observed using 50 microM of Rose Bengal encapsulated in the interior of the DPPC:DPPE-proteoliposome system. But, when we use 50 microM of Rose Bengal, present only in the extravesicular environment, and photo-irradiation with a laser dose of 200 mJ/cm2, it results in the loss of 40-50% of the ATPase activity, with damage of the DPPC:DPPE-proteoliposome integrity. Using a dose of 400 mJ/cm2 the ATPase activity was totality lost. Consequently, these effects could be correlated with direct damage in the peptide structure. The photo-irradiation of the system constituted by DLOPC:DLOPE-proteoliposome in the presence of Rose Bengal, encapsulated only in the interior compartment or in the extra-liposomal environments, revealed a gradual decrease of the ATPase activity, maintaining it at 30% after a dose of 1200 mJ/cm2 and losing total ATPase activity at 800 mJ/cm2, respectively, with the loss of integrity of this vesicular system in both conditions studied. The generated singlet oxygen could attack the double linkage present in the fatty acid structure of the lipid instead of the amino acid in the protein structure and, in a second step, result in an indirect inactivation of the enzyme activity. In summary, these results indicated that singlet oxygen species produced by photo-oxidation of Rose Bengal using laser light could act in protein and lipid structure depending on its proportion or distribution.  相似文献   

12.
GM1对肌质网Ca~(2+)-ATPase活性及膜流动性的影响   总被引:2,自引:0,他引:2  
外源性GM1对肌质网Ca2+-ATPase的水解及转运活性都有明显的抑制作用.在GM1浓度为0~8nmol/mg蛋白质范围内抑制作用具有浓度依赖性.当GM1浓度达到8nmol/mg蛋白质时,酶活性受到最大抑制,此时水解活性降低51%,转运活性降低49%.荧光偏振测定结果表明:GM1参入后,肌质网膜流动性降低.  相似文献   

13.
Human wild-type cardiac troponin T, I, C and five troponin T mutants (I79N, R92Q, F110I, E244D, and R278C) causing familial hypertrophic cardiomyopathy were expressed in Escherichia coli, and then were purified and incorporated into rabbit cardiac myofibrils using a troponin exchange technique. The Ca2+-sensitive ATPase activity of these myofibrillar preparations was measured in order to examine the functional consequences of these troponin mutations. An I79N troponin T mutation was found to cause a definite increase in Ca2+ sensitivity of the myofibrillar ATPase activity without inducing any significant change in the maximum level of ATPase activity. A detailed analysis indicated the inhibitory action of troponin I to be impaired by the I79N troponin T mutation. Two more troponin T mutations (R92Q and R278C) were also found to have a Ca2+-sensitizing effect without inducing any change in maximum ATPase activity. Two other troponin T mutations (F110I and E244D) had no Ca2+-sensitizing effects on the ATPase activity, but remarkably potentiated the maximum level of ATPase activity. These findings indicate that hypertrophic cardiomyopathy-linked troponin T mutations have at least two different effects on the Ca2+-sensitive ATPase activity, Ca2+-sensitization and potentiation of the maximum level of the ATPase activity.  相似文献   

14.
Calcium ions play an important role in the regulation of stomatal movement and the mechanism underlying this action is yet to be determined. It is suggested that guard cell plasma membrane ATPase is a target for calcium action and that this effect is mediated by calmodulin. In this study, the effects of calcium and two calmodulin antagonists on ATPase activity in a crude homogenate of Commelina communis L. guard cell protoplasts were examined. The homogenate contained Mg2+-dependent, K+-simulated ATPase activity, which was inhibited by CaCl2 while stimulated by the calmodulin antagonists, compound 48/80 and chlorpromazine. The calmodulin antagonists partially reversed the inhibitory effect of calcium ions. The results support the possibility of calmodulin involvement in the regulation of guard cell ATPase activity by calcium ions.  相似文献   

15.
枸杞体细胞胚发生中Ca^2+和ATPase的超微结构定位研究   总被引:6,自引:0,他引:6  
研究2,4-D诱导枸杞体细胞胚发生中的作用及其与Ca^2 含量和ATPase活性时空分布动态之间的关系,以探讨2,4-D诱导植物体细胞胚发生的作用机理。采用超微细胞化学定位的方法,跟踪分析了体细胞胚发生与发育的不同时期,Ca^2 和ATPase活性的时空分布动态。结果表明:2,4-D是诱导离体培养的枸杞体细胞进入胚胎状态的关键激素。在含有2,4-D和不含2,4-D的培养条件下,分别诱导枸杞体细胞脱分化后,再转入除去2,4-D的MS培养基上,进行分化培养,结果前者可分化形成体细胞胚,因而称为胚性愈伤组织。后者在相同条件却不能分化形成胚,故称为非胚性愈伤组织。在2,4-D诱导枸杞的胚性愈伤组织中,胚性细胞分化早期的细胞间隙和细胞壁上均有Ca^2 沉淀。随着胚性细胞的分化、分裂和多细胞原胚形成,这时Ca^2 在细胞内的分布主要集中在细胞膜和液泡膜上;球形胚期在细胞核中Ca^2 呈弥散性分布。在此过程中,ATPase活性时空分布与Ca^2 的定位变化具有高度一致性,仅仅稍滞后于Ca^2 出现的时间。而在胚性细胞分化早期,ATPase活性同样位于质膜上,随后在液泡和细胞核都可见ATPase活性分布。而在非胚性愈伤组织中,则未见Ca^2 和ATPase活性呈时空动态分布,而且随着非胚性细胞的液泡化,无论是Ca^2 含量,还是ATPase活性都呈逐渐降低的趋势。表明Ca^2 和ATPase活性变化与2,4-D诱导的胚性细胞分化和发育密切相关。并由此推测,Ca^2 和ATPase的时空分布对胚性细胞分化中的信息传递和调控相关基因表达起着关键性作用。  相似文献   

16.
A purified plasmalemma preparation from roots of Plantago major L. ssp. pleiosperma (Pilger) was obtained by the two-phase partitioning method, using 6.5% (w/w) of Dextran T-500 and polyethylene glycol 3350, respectively. The distribution of murker enzymes proved the purity of the plasmalemma fraction. The ATPase activity was characterized by determining its sensitivity to anions, cations and inhibitors. The Mg2+-dependent ATPase activity peaked at pH 7.25, K+-stimulation at pH 6.75, and the Cl -stimulation both at pH 6.75 and 7.5 (all in the presence of 3 m M MgSO4). The plasmalemma preparations hydrolyzed preferentially ATP (in the presence of Mg2+), although they were less specific for ATP at pH 7.5 than at pH 6.75. The Cl - stimulated ATPase is probably associated with and located on the plasmalemma. The question if the Cl -stimulated activity is due to an ATPase distinct from the classical K+-stimulated ATPase is considered.  相似文献   

17.
The effects of bivalent (Mg2+, Ca2+, Sr2+) and monovalent (K+, Na+, NH4+) cations on the ATPase activity of subfragment 1 of myosin (SI) with a decreased Mg2+ content (EDTA-SI) were studied. Mg2+ activate the EDTA-SI ATPase, but only in the absence of other activating cations. K+, NH4+, a2+ and Sr2+ have a much stronger activating effect on EDTA-SI ATPase than on Mg-SI (SI enriched with Mg2+) ATPase. Monovalent cations inhibit Mg2+-ATPase and Ca2+-ATPase of EDTA-SI, while K+ and NH4+ activate Sr2+-ATPase of EDTA-SI. Based on experimental results and literary data, a hypothesis on the participation of the cations in the functioning of myosin ATPase was postulated. This hypothesis entails the existence of two closely interconnected cation-binding sites in the vicinity of the myosin active center (one for bivalent and one for monovalent cations); the ATPase activity of myosin is at any moment dependent on the nature of cations present in these two sites. An attempt to explain the role of the cations in the accomplishment of the ATPase reaction by myosin was made.  相似文献   

18.
Short term effects of insulin on total brain and branchial Na+K+ ATPase, Ca2+ ATPase and Na+, K+ and Ca2+ ions were investigated in A. testudineus. The increase in brain Ca2+ ATPase after alloxan treatment may account for an increased amount of intracellular calcium required for biochemical events taking place inside the cells. Branchial Na+K+ATPase was significantly stimulated while Ca2+ ATPase significantly inhibited after alloxan treatment. This suggests that alloxan exerts its inhibitory effect on the ATP-driven Ca2+ transport via; its action on the Ca2+ pump protein rather than the membrane permeability to Ca2+. The increased activity of brain Na+K+ ATPase at 3 and 24 hr by insulin to alloxan pretreated fish may account for the stimulated co-transport of glucose and its utilization for energy requirements and the excitatory action on neurons in the brain. The elevated brain Ca2+ ATPase may be due to the role of calcium as a second messenger in hormone action. At 24 hr, the activity of branchial Na+K+ ATPase and Ca2+ ATPase in alloxan pretreated specimens was significantly stimulated by insulin. This may be due to increased synthesis of these enzyme units. Administration of insulin (lU/fish) in normal fish significantly inhibited the activity of brain and branchial Na+K+ ATPase while brain Ca2+ ATPase showed a stimulatory effect at 3 and 24 hr compared to control. Inhibition of total branchial Ca2+ ATPase activity by insulin may be due to increased Ca2+ concentration. Higher plasma glucose level in alloxan treated groups confirms the diabetic effect of alloxan. Insulin reverses this effect. The possible mechanism by which insulin controls Na+K+ ATPase activity appears to be tissue specific. The results seem to be the first report on the effect of insulin on ATPase activity in a teleost. These data are consistent with the hypothesis that insulin performs a role in hydro mineral regulation in freshwater teleosts.  相似文献   

19.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

20.
The influence of Ca2+ on the enzymatic and physical properties of smooth muscle myosin was studied. The actin-activated ATPase activity of phosphorylated gizzard myosin and heavy meromyosin is higher in the presence of Ca2+ than in its absence, but this effect is found only at lower MgCl2 concentrations. As the MgCl2 concentration is increased, Ca2+ sensitivity is decreased. The concentration of Ca2+ necessary to activate ATPase activity is higher than that required to saturate calmodulin. The similarity of the pCa dependence of ATPase activity and of Ca2+ binding to myosin and the competition by Mg2+ indicate that these effects involved the Ca2+-Mg2+ binding sites of gizzard myosin. For the actin dependence of ATPase activity of phosphorylated myosin at low concentrations of MgCl2, both Vmax and Ka are influenced by Ca2+. The formation of small polymers by phosphorylated myosin in the presence of Ca2+ could account for the alteration in the affinity for actin. For the actin dependence of phosphorylated heavy meromyosin at low MgCl2 concentrations, Ca2+ induces only an increase in Vmax. To detect alterations in physical properties, two techniques were used: viscosity and limited papain hydrolysis. For dephosphorylated myosin, 6 S or 10 S, Ca2+-dependent effects are not detected using either technique. However, for phosphorylated myosin the decrease in viscosity corresponding to the 6 S to 10 S transition is shifted to lower KCl concentrations by the presence of Ca2+. In addition, a Ca2+ dependence of proteolysis rates is observed with phosphorylated myosin but only at low ionic strength, i.e. under conditions where myosin assumes the folded conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号