首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CVI cells were transfected with oversized simian virus 40 (SV40) genomes that could be reduced to packageable size by alternative homologous recombination pathways involving either two polydeoxyguanylic-thymidylic acid X polydeoxycytidylic-adenylic acid (poly[d(GT).d(CA)]; abbreviated hereafter as poly(GT)] tracts or two tracts of homologous SV40 sequence. Plaque-forming viruses rescued by this procedure were found to contain genomes formed by homologous and nonhomologous recombination events. Half of the viable viral DNA molecules recovered were the result of recombination between two tracts of poly(GT). Approximately 20% of the rescued viral genomes were produced by homologous recombination between tracts of SV40 DNA. Nonhomologous recombination involving SV40 sequences was also a major pathway of deletion, producing ca. 30% of the viral plaques. Tracts of poly(GT) generated by recombination were variable in length, suggesting that recombination between poly(GT) tracts was usually unequal. On a per-nucleotide basis, poly(GT) recombination occurred eight times more frequently than did recombination between homologous SV40 DNA. This eightfold difference is the maximum recombinatory enhancement attributable to poly(GT) sequences. Although DNA sequence analysis showed that tracts of poly(GT) generated by recombination retained the alternating G-T repeat motif throughout their length, the contribution of the nonhomologous pathway to poly(GT) recombination cannot be ruled out, and the relative proclivity of a given length of d(GT).d(CA) sequence to undergo homologous recombination is probably less than eight times greater than that of an SV40 sequence of the same length.  相似文献   

2.
A 90-base-pair tract of a simple sequence composed of alternating guanosine and thymidine nucleotide residues (poly[d(GT) . d(CA)]) was inserted into the simian virus 40 genome at nucleotide 2666 (0.17 map units). The poly[d(GT) . d(CA)] insertion was stably maintained in the viral genome, but the variant virus grew more slowly than simian virus 40.  相似文献   

3.
RecA independent recombination of poly[d(GT)-d(CA)] in pBR322.   总被引:6,自引:2,他引:4       下载免费PDF全文
Short sequence tracts composed of alternating guanosine and thymidine nucleotide residues poly[d(GT)-d(CA)] carried in a derivative of pBR322 were recombinogenic in a recA host. Recombination brought about by poly[d(GT)-d(CA)] tracts displayed two interesting properties: (i) the reaction was quasi-sequence-specific in that while recombination usually occurred between two poly[d(GT)-d(CA)] tracts, recombination also occurred between sequences bordering the dinucleotide repeats. (ii) recombination was enhanced when two poly[d(GT)-d(CA)] tracts were clustered within 250 base pairs of each other, but not when the repeats were separated by 3 kilobase pairs. The mechanism by which poly[d(GT)-d(CA)] stimulated recombination remains to be determined, but the behavior of these sequences is consistent with the idea that general recombination in E. coli may involve formation of Z-DNA.  相似文献   

4.
The sodium dodecyl sulfate driven dissociation reactions of daunorubicin (1), mitoxantrone (2), ametantrone (3), and a related anthraquinone without hydroxyl groups on the ring or side chain (4) from calf thymus DNA, poly[d(G-C)]2, and poly[d(A-T)]2 have been investigated by stopped-flow kinetic methods. All four compounds exhibit biphasic dissociation reactions from their DNA complexes. Daunorubicin and mitoxantrone have similar dissociation rate constants that are lower than those for ametantrone and 4. The effect of temperature and ionic strength on both rate constants for each compound is similar. An analysis of the effects of salt on the two rate constants for daunorubicin and mitoxantrone suggests that both of these compounds bind to DNA through a mechanism that involves formation of an initial outside complex followed by intercalation. The daunorubicin dissociation results from both poly[d(G-C)]2 and poly[d(A-T)]2 can be fitted with a single exponential function, and the rate constants are quite close. The ametantrone and 4 polymer dissociation results can also be fitted with single exponential curves, but with these compounds the dissociation rate constants for the poly[d(G-C)]2 complexes are approximately 10 times lower than for the poly[d(A-T)]2 complexes. Mitoxantrone also has a much slower dissociation rate from poly[d(G-C)]2 than from poly[d(A-T)]2, but its dissociation from both polymers exhibits biphasic kinetics. Possible reasons for the biphasic behavior with the polymers, which is unique to mitoxantrone, are selective binding and dissociation from the alternating polymer intercalation sites and/or dual binding modes of the intercalator with both side chains in the same groove or with one side chain in each groove.  相似文献   

5.
Binding of simple homopolymeric sequences to Drosophila melanogaster nuclear proteins has been studied. Proteins with Mr 65-72 kDa have been found, which specifically bind to synthetic poly[d(T-G)].poly[d(C-A)], as well as to D. melanogaster DNA containing a block of poly[d(T-G)].poly[d(C-A) 40 b.p. in length. It has been shown, that these proteins bind only to poly[d(T-G).poly[d(C-A)] and not to other types of simple sequences, for example poly[d(G-A)].poly[d(T-C)] and poly[d(A-T)].  相似文献   

6.
Psi compaction of poly[d(AT)].poly[d(AT)]   总被引:1,自引:0,他引:1  
Y A Shin  S L Feroli  G L Eichhorn 《Biopolymers》1986,25(11):2133-2148
The compaction of poly[d(A–T)] · poly[d(A–T)] by Co(III) is accompanied by the formation of ψ(+)- and ψ(-)-structures. The chirality of the ψ-structure depends on the Co(III) concentration, ionic strength, temperature, pH, and the chain length of the polymer. The two forms can be readily interconverted by manipulating these factors. Phase diagrams have been constructed that demonstrate the regions of stability of the enantiomers as a function of two variables, while other factors are held constant. At critical points in the phase diagram the two forms are in such unstable equilibrium that mechanical motion will cause ψ(+) ? ψ(-) interconversion. The formation of both ψ(+)- and ψ(-)-structures by the action of Co(III) on poly[d(A–T)] · poly[d(A–T)] contrasts markedly with the behavior of poly[d(G–C)] · poly[d(G–C)] in similar circumstances by forming only the ψ(+)-structure and that of native DNA to produce no ψ at all. Thus the base sequence is important in determining the structure of chirally associated DNA molecules.  相似文献   

7.
We have measured the CD, isotropic absorption, and LD of poly[d(A)]–poly[d(T)] and poly[d(AT)]–poly[d(AT)] in the vacuum-uv spectral region. The reduced dichroism (LD divided by isotropic absorption) varied as a function of wavelength and was independent of shear gradient. Thus, the bases are not perpendicular to the helix axis in solution. Since the directions of the transition dipoles are known, the orientations of the bases in the polymers can be calculated from the reduced dichroism spectra. The results show that the base normals are tilted at angles greater than 25°, with respect to the helix axis, and thymine is tilted more than adenine for both polymers. The tilt axes of adenine and thymine are not parallel, indicating a large propeller twist. Space-filling models of poly[d(A)]–poly[d(T)] and poly[(AT)]–poly[d(AT)] are built based on our results, and the conformations of the two (A + T) polymers in solution are discussed.  相似文献   

8.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

9.
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register.  相似文献   

10.
Although most duplex DNAs are not immunogenic some synthetic DNAs such as poly[d(Tm5C)].poly[d(GA)] are weakly immunogenic allowing the production of monoclonal antibodies. The specificity of one of these antibodies, Jel 172, was investigated in detail by a competitive solid-phase radioimmune assay. Jel 172 bound well to poly[d(TC)].poly[d(GA)] but not to other duplex DNAs such as poly[d(TTC)].poly[d(GAA)] and poly[d(TCC)].poly[d(GGA)]. The binding to poly[d(Br5UC)].poly[d(GA)] was enhanced while that to poly[d(TC)].poly[d(IA)] was decreased compared to poly[d(TC)].poly[D(GA)]. Thus, not only is the antibody very specific for a sequence of duplex DNA but it also appears to recognize functional groups in both grooves of the helix.  相似文献   

11.
The interaction of poly[(G-C)] and poly[d(G-m5C)] with the antitumor antibiotic elsamicin A, which binds to alternating guanine + cytosine tracts in DNA, has been studied under the B and Z conformations. Both the rate and the extent of the B-to-Z transition are diminished by the antibiotic, as inferred by spectroscopic methods under ionic conditions that otherwise favor the left-handed conformation of the polynucleotides. Moreover, elsamicin converts the Z-form DNA back to the B-form. The circular dichroism data indicate that elsamicin binds to poly[d(G-C)] and poly[d(G-m5C)] to form a right-handed bound elsamicin region(s). The transition can be followed by changes of the molar ellipticity at 250 nm, thus providing a convenient wavelength to monitor the Z-to-B conformational change of the polymers as elsamicin is added. The elsamicin A effect might be explained by a model in which the antibiotic binds preferently to a B-form DNA, playing a role as an allosteric effector on the equilibrium between the B and Z conformations, thus favoring the right-handed one.  相似文献   

12.
The binding of propidium to poly(dA).poly(dT) [poly(dA.dT)] and to poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]] has been compared under a variety of solution conditions by viscometric titrations, binding studies, and kinetic experiments. The binding of propidium to poly[d(A-T)2] is quite similar to its binding to calf thymus deoxyribonucleic acid (DNA). The interaction with poly(dA.dT), however, is quite unusual. The viscosity of a poly(dA.dT) solution first decreases and then increases in a titration with propidium at 18 degrees C. The viscosity of poly[d(A-T)2] shows no decrease in a similar titration. Scatchard plots for the interaction of propidium with poly(dA.dT) show the classical upward curvature for positive cooperativity. The curvature decreases as the temperature is increased in binding experiments. A van't Hoff plot of the observed binding constants yields an apparent positive enthalpy of approximately +6 kcal/mol for the propidium-poly(dA.dT) interaction. Propidium binding to poly[d(A-T)2] shows no evidence for positive cooperativity, and the enthalpy change for the reaction is approximately -9 kcal/mol. Both the magnitude of the dissociation constants and the effects of ionic strength are quite similar for the dissociation of propidium from poly(dA-T)2] and from poly[d(A-T)2], suggesting that the intercalated states are similar for the two complexes. The observed association reactions, under pseudo-first-order conditions, are quite different. Plots of the observed pseudo-first-order association rate constant vs. polymer concentration have much larger slopes for propidium binding to poly[d(A-T)2] than to poly(dA.dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Flow linear dichroism is used to measure specific inclinations for each of the four bases in poly[d(AC)]·;poly[d(GT)] and poly[d(AG)]·poly[d(CT)] in both the B and A forms. For the B form in solution the bases are found to have a sizable inclination. Inclination is increased in the A form, as expected. In all cases the pyrimidines are more inclined than the purines. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
We have undertaken a search for mammalian DNA-binding proteins that enhance the activity of DNA polymerases in a template sequence-specific fashion. In this paper, we report the extensive purification and characterization of a new DNA-binding protein from rabbit liver that selectively stimulates DNA polymerases to copy synthetic poly[d(G-C)] and the poly(dC) strand of poly(dC).poly(dG) as well as single-stranded natural DNA that contains stretches of oligo(dC). The enhancing protein, a polypeptide of 65 kDa designated factor C, stimulates the copying of the two synthetic templates by Escherichia coli DNA polymerase I, Micrococcus luteus polymerase, and eukaryotic DNA polymerases alpha and beta, but not by avian myeloblastosis virus polymerase. Factor C, however, does not affect utilization by these polymerases of the poly(dG) strand of poly(dC).poly(dG), of poly(dC) primed by oligo(dG), or of poly(dA).poly(dT) and poly[d(A-T)]. With polymerase I, Michaelis constants (Km) of poly[d(G-C)] and of the poly(dC) strand of poly(dC).poly(dG) are decreased by factor C 37- and 4.7-fold, respectively, whereas maximum velocity (Vmax) remains unchanged. By contrast, neither the Km value of the poly(dG) strand of poly(dC).poly(dG) nor the Vmax value with this template is altered by factor C. Rates of copying of activated DNA, denatured DNA, or singly primed M13 DNA are not affected significantly by factor C. However, primer extension analysis of the copying of recombinant M13N4 DNA that contains runs of oligo(dC) within an inserted thymidine kinase gene shows that factor C increases processivity by specifically augmenting the efficiency at which polymerase I traverses the oligo(dC) stretches. Direct binding of factor C to denatured DNA is indicated by retention of the protein-DNA complex on columns of DEAE-cellulose. Binding of factor C to poly[d(G-C)] is demonstrated by the specific adsorption of the enhancing protein to columns of poly[d(G-C)]-Sepharose. We propose that by binding to poly[d(G-C)] and to poly(dC).poly(dG), factor C enables tighter binding of some DNA polymerases to these templates and facilitates enzymatic activity.  相似文献   

15.
S P Edmondson  W C Johnson 《Biopolymers》1986,25(12):2335-2348
We have measured the CD, isotropic absorption, and linear dichroism (LD) in the vacuum-uv spectral region for the B-conformations of poly[d(G)]-poly[d(C)] and poly[d(GC)]-poly[d(GC)], and for the Z-conformation of poly[d(GC)]-poly[d(GC)] formed in 70% trifluoroethanol. The reduced dichroism (LD divided by isotropic absorption) for all conformations varied with wavelength, indicating that the bases are not perpendicular to the helix axis. Since the directions of the transition dipoles are known, the inclinations and axes of inclination of each base can be determined from the wavelength dependence of the reduced dichroism spectra. The results indicate that the base normals of the (G + C) polymers in the B- and Z-conformations are tilted at angles greater than 19° with respect to the helix axis. The guanine and cytosine bases have different inclinations, and the tilt axes are not parallel. Therefore, the bases for all the (G + C) polymer conformations studied are buckled and propeller twisted.  相似文献   

16.
On the basis of circular dichroism (CD) data, we have now identified six different conformational states (other than the duplex) of poly[d(A-G).d(C-T)] at pH values between 8 and 2.5 (at 0.01M Na+; 20 degrees C). Three of these structural rearrangements were observed as the pH was lowered from 8 to 2.5, and three additional rearrangements were observed as the pH was raised from 2.5 back to neutral pH. The major components of the six conformational states were defined using appropriate combinations of the CD spectra of the duplex, triplex, and denatured forms of this polymer, as well as the CD spectra of the individual single strands and their respective acid-induced self-complexes. Our results show that the acid-induced rearrangements of poly[d(A-G).d(C-T)] include not only the poly[d(C+-T).d(A-G).d(C-T)] triplex, but also include the poly[d(C-T)] loop-out structure and a self-complexed form of the poly[d(A-G)] strand that is pH-dependent.  相似文献   

17.
The secondary structures of double-stranded poly[d(A-T)].poly[d(A-T)] in films have been studied by IR spectroscopy with three different counterions (Na+, Cs+, and Ni2+) and a wide variety of water content conditions (relative humidity between 100 and 47%). In addition to the A-, B-, C-, and D-form spectra, a new IR spectrum has been obtained in the presence of nickel ions. The IR spectra of Ni2+-poly[d(A-T)].poly[d(A-T)] films are analyzed by comparison with previously assigned IR spectra of left-handed poly[d(G-C)].poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)], and it is possible to conclude that they reflect a Z-type structure for poly[d(A-T)].poly[d(A-T)]. The Z conformation has been favored by the high polynucleotide concentration, by the low water content of the films, and by specific interactions of the transition metal ions with the purine bases stabilized in a syn conformation. A structuration of the water hydration molecules around the double-stranded Ni2+-poly[d(A-T)].poly[d(A-T)] is shown by the presence of a strong sharp water band at 1615 cm-1.  相似文献   

18.
We examined the binding geometry of Co-meso-tetrakis (N-methyl pyridinium-4-yl)porphyrin, Co-meso-tetrakis (N-n-butyl pyridinium-4-yl)porphyrin and their metal-free ligands to poly[d(A-T)(2)] and poly[d(G-C)(2)] by optical spectroscopic methods including absorption, circular and linear dichroism spectroscopy, and fluorescence energy transfer technique. Signs of an induced CD spectrum in the Soret band depend only on the nature of the DNA sequence; all porphyrins exhibit negative CD when bound to poly[d(G-C)(2)] and positive when bound to poly[d(A-T)(2)]. Close analysis of the linear dichroism result reveals that all porphyrins exhibit outside binding when complexed with poly[d(A-T)(2)], regardless of the existence of a central metal and side chain. However, in the case of poly[d(G-C)(2)], we observed intercalative binding mode for two nonmetalloporphyrins and an outside binding mode for metalloporphyrins. The nature of the outside binding modes of the porphyrins, when complexed with poly[d(A-T)(2)] and poly[d(G-C)(2)], are quite different. We also demonstrate that an energy transfer from the excited nucleo-bases to porphyrins can occur for metalloporphyrins.  相似文献   

19.
The alpha-form of poly[d(A)].poly[d(T)], observed in fibers at high (greater than 80%) relative humidity, is a 10-fold double-helical structure of pitch 3.2 nm. This new X-ray analysis shows that the two strands of the double helix are of the same kind conformationally and both B-like in containing C-2'-endo-puckered deoxyribose rings. Nevertheless, the two strands are different enough for the overall morphology of the duplex to resemble that of the heteromerous model for the drier (beta) form of poly[d(A)].poly[d(T)] in which one strand has C-2'-endo rings and the other C-3'-endo. Since the orientations of the bases in poly[d(A)].poly[d(T)] are persistently different from those of classical B-DNA it is likely that there will be local bending (about 10 degrees) at the junctions between general sequence tracts and the oligo[d(A)].oligo[d(T)] tracts that occur in some native DNAs. The conclusions about the structure of alpha-poly[d(A)].poly[d(T)] are reinforced by independent analyses of similar X-ray diffraction patterns from poly[d(A)].poly[d(U)] and poly[d(A-I)].poly[d(C-T)].  相似文献   

20.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号