首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1   总被引:9,自引:0,他引:9  
  相似文献   

5.
Cucurbitacin B, a natural triterpenoid is well-known for its strong anticancer activity, and recent studies showed that the compound inhibits JAK/STAT3 pathway. In this study, we demonstrate for the first time that cucurbitacin B is also a potent inhibitor of NF-κB activation. Our results showed that cucurbitacin B inhibited TNF-α-induced expression of NF-κB reporter gene and NF-κB target genes in a dose-dependent manner, however, it did not prevent either stimuli-induced degradation of IκBα or nuclear translocation and DNA-binding activity of NF-κB. On the other hand, cucurbitacin B dose-dependently suppressed not only NF-κB activation induced by overexpression of RelA/p65 but also transactivation activity of RelA/p65 subunit of NF-κB. Consistently, treatment of HeLa cells with the compound significantly suppressed TNF-α-induced activation of Akt and phosphorylation of Ser536 in RelA/p65, which is required for transactivation activity. Consequently, cucurbitacin B inhibited TNF-α-induced expression of NF-κB-dependent anti-apoptotic proteins such as c-IAP1, c-IAP2, XIAP, TRAF1, and TRAF2 and sensitized TNF-α-induced cell death. Taken together, our results demonstrated that cucurbitacin B could be served as a valuable candidate for the intervention of NF-κB-dependent pathological condition such as cancer.  相似文献   

6.
7.
8.
Fas-associated factor-1 (FAF1) is a Fas-binding pro-apoptotic protein that is a component of the death-inducing signaling complex in Fas-mediated apoptosis. Here, we show that FAF1 is involved in negative regulation of NF-kappaB activation. Overexpression of FAF1 decreased the basal level of NF-kappaB activity in 293 cells. NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, interleukin-1beta, and lipopolysaccharide was also inhibited by FAF1 overexpression. Moreover, FAF1 suppressed NF-kappaB activation induced by transducers of diverse NF-kappaB-activating signals such as TNF receptor-associated factor-2 and -6, MEKK1, and IkappaB kinase-beta as well as NF-kappaB p65, one of the end point molecules in the NF-kappaB activation pathway, suggesting that NF-kappaB p65 might be a target molecule upon which FAF1 acts. Subsequent study disclosed that FAF1 physically interacts with NF-kappaB p65 and that the binding domain of FAF1 is the death effector domain (DED)-interacting domain (amino acids 181-381), where DEDs of the Fas-associated death domain protein and caspase-8 interact. The NF-kappaB activity-modulating potential of FAF1 was also mapped to the DED-interacting domain. Finally, overexpression of FAF1 prevented translocation of NF-kappaB p65 into the nucleus and decreased its DNA-binding activity upon TNFalpha treatment. This study presents a novel function of FAF1, in addition to the previously known function as a component of the Fas death-inducing signaling complex, i.e. NF-kappaB activity suppressor by cytoplasmic retention of NF-kappaB p65 via physical interaction.  相似文献   

9.
10.
11.
Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B   总被引:10,自引:0,他引:10  
With the emerging role of NF-kappa B in cancer it is important that its responses to stimuli relevant to tumor progression and therapy are understood. Here, we demonstrate that NF-kappa B induced by cytotoxic stimuli, such as ultraviolet light (UV-C) and the chemotherapeutic drugs daunorubicin/doxorubicin, is functionally distinct to that seen with the inflammatory cytokine TNF and is an active repressor of antiapoptotic gene expression. Surprisingly, these effects are mediated by the RelA(p65) NF-kappa B subunit. Furthermore, UV-C and daunorubicin inhibit TNF-induced NF-kappa B transactivation, indicating that this is a dominant effect. Consistent with this, mechanistic studies reveal that UV-C and daunorubicin induce the association of RelA with histone deacetylases. RelA can therefore be both an activator and repressor of its target genes, dependent upon the manner in which it is induced. This has important implications for the role of NF-kappa B in tumorigenesis and the use of NF-kappa B inhibitors in cancer therapy.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Xia C  Watton S  Nagl S  Samuel J  Lovegrove J  Cheshire J  Woo P 《FEBS letters》2004,570(1-3):217-222
The citM gene from Lactococcus lactis CRL264 was demonstrated to encode for an oxaloacetate decarboxylase. The enzyme exhibits high levels of similarity to malic enzymes (MEs) from other organisms. CitM was expressed in Escherichia coli, purified and its oxaloacetate decarboxylase activity was demonstrated by biochemical and genetic studies. The highest oxaloacetate decarboxylation activity was found at low pH in the presence of manganese, and the Km value for oxaloacetate was 0.52 ± 0.03 mM. However, no malic activity was found for this enzyme. Our studies clearly show a new group of oxaloacetate decarboxylases associated with the citrate fermentation pathway in gram-positive bacteria. Furthermore, the essential catalytic residues were found to be conserved in all members of the ME family, suggesting a common mechanism for oxaloacetate decarboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号