首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified cutin from cranberry (Vaccinium macrocarpon, var. Howes) skin was selectively degraded, and the cutin acids, as methyl esters, separated by TLC into seven classes including monobasic acids, dibasic acids, monohydroxy monobasic acids, monohydroxy epoxymonobasic acids, vic-dihydroxy dibasic acids, dihydroxy monobasic acids and trihydroxy monobasic acids. Of the 41 components identified in cranberry cutin by GLC and MS analysis, 18-hydroxyoctadec-cis-9-enoic acid (9·4%), 18-hydroxy-cis-9,10-epoxyoctadecanoic acid (7·5%), 10,16-dihydroxyhexadecanoic acid (16·7%) and threo-9,10,18-trihydroxyoctadecanoic acid (43·7%) were shown to be the major constituents.  相似文献   

2.
The cutins of fruits and leaves of four apple cultivars have been analysed using TLC, GLC and GC-MS. They are similarly composed of saturated, monounsaturated and diunsaturated fatty, hydroxy-fatty and epoxyhydroxy-fatty acids. The most abundant monomers are 18-hydroxyoctadeca-9,12-dienoic, 10,16-dihydroxyhexadecanoic, 9,10-epoxy-18-hydroxyoctadec-12-enoic, 9,10-epoxy-18-hydroxyoctadecanoic and 9,10,18-trihydroxyoctadecanoic acids. The fruit cutins have high contents of epoxides (35–40%) and unsaturated components ( > 40%) and C18 compounds predominate over C16. The leaf cutins contain smaller amounts of unsaturated components than the fruits and higher proportions of C16 compounds. The adaxial leaf cutin differs in composition from the abaxial. 10,16-Dihydroxyhexadecanoic and 9,10-epoxy-18-hydroxoctadecanoic acids are the major constituents (each ca. 30%) of the adaxial leaf cutin and 10,16-dihydroxyhexadecanoic acid (55–65%) predominates in the abaxial.  相似文献   

3.
Hydroperoxides produced by oxidation of linoleic acid with purified eggplant lipoxygenase were separated by TLC and analysed by IR spectroscopy. The methyl hydroxystearates from the enzymatically produced hydroperoxides were analysed by MS and GLC. Both analyses indicated that the eggplant enzyme converted linoleic acid almost exclusively (96%) into the 13-hydroperoxy isomer whereas the 9-hydroperoxy isomer was only a minor product (4%). HPLC of the methyl ester of the isolated hydroperoxides showed three components. Each component was collected, reduced to methyl hydroxystearate and characterized by GLC, MS and IR analysis. The components were identified as 13-hydroperoxy cis-trans isomer (92.8%), 13-hydroperoxy trans-trans isomer (2.6%) and 9-hydroperoxy cis-trans isomer (4.6%). A polar by-product present in the reaction mixture was identified by IR, 1H NMR, and MS (of the toluene-p-sulphonyl derivative) as 13-hydroxy-12-oxo-octadec-cis-9-enoic acid.  相似文献   

4.
Cutin, the structural component of plant cuticle, is a polymer of C16 and C18 hydroxy fatty acids. Previous results have suggested that oleic acid undergoes ω-hydroxylation, epoxidation of the double bond, and, finally, hydration of the epoxide to give rise to the three major components of the C18 family of cutin acids. 18-Hydroxy [18-3H]oleic acid and 18-hydroxy-9,10-epoxy[18-3H]stfaric acid have been synthesized and, with these synthetic substrates, the conversion of 18-hydroxyoleic acid to 18-hydroxy-9,10-epoxystearic acid and the hydrolysis of 18-hydroxy-9,10-epoxystearic acid to 9,10,18-trihydroxystearic acid were directly demonstrated in apple fruit skin and in the leaves of apple and Senecio odoris. Trichloropropene oxide, an inhibitor of microsomal epoxide hydrases of animals, specifically inhibited the conversion of [1-14C]oleic acid into 18-hydroxy-9,10-epoxystearic acid and 9,10,18-trihydroxystearic acid, while it had no effect on the conversion of [1-14C]palmitic acid into hydroxylated palmitic acid, a process which does not involve epoxy acid intermediates. Therefore, it appears that this inhibitor affects epoxidation and or epoxide hydration steps involved in cutin biosynthesis.  相似文献   

5.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

6.
Unsaturated fatty acids (UFAs), including oleic acid (OA, C18:1n-9), linoleic acid (LA, C18:2n-6) and α-linolenic acid (ALA, C18:3n-3), are major components of membrane lipids in Pichia pastoris GS115. In order to clarify the biosynthesis pathway of UFAs on the molecular level and investigate their possible roles in growth and development of this strain, we here report modified strains with disrupted desaturase gene by homologous recombination. Gas chromatography analysis of fatty acid composition in the corresponding mutants confirmed that ?12-desaturase encoded by Fad12 was responsible for the formation of LA, and ALA was synthesized by ?15-desaturase encoded by Fad15. Simultaneous deletion of Fad9A and Fad9B was lethal and supplementation of OA could restore growth, indicating that possibly both Fad9A and Fad9B encoded ?9-desaturase that converted SA into OA. Phenotypic analysis demonstrated that wild type and Fad15 mutant grew at almost the same rate, Fad12 mutant grew much slower than these two strains. Moreover, OA was positively correlated to cold tolerance and ethanol tolerance of GS115, whereas LA and ALA did not affect cold tolerance and ethanol tolerance of it. In addition, we showed that tolerance of GS115 to high concentration of methanol was independent of these three UFAs.  相似文献   

7.
The cuticular wax and cutin components of the cuticular membranes isolated from the leaves of two spinach cultivars have been determined. The membranes contain about 0·007 mg/cm2 of cuticular wax which comprises monobasic acids (C16–C38) with hexadecanoic as the major component. The amounts of cutin are comparable with those of cuticular wax and the monomeric constituents are predominantly C18 epoxy compounds. The most abundant monomer is 9,10-epoxy-18-hydroxyoctadecanoic acid (up to 63%) together with substantial amounts of 9,10,18-trihydroxyoctadecanoic acid (up to 22%). Also present are 9,10-epoxyoctadecane-1,18-dioic acid (6–7%) dihydroxyhexadecanoic acid (3–4%) and ω-hydroxymonobasic and fatty acid fractions. The tentative identification of two minor components, 18-hydroxyoxooctadecanoic and 9,10-epoxy-12,18-dihydroxyoctadecanoic acids, is also made. Although spinach membranes have a delicate structure their cutin composition is essentially similar to that of much more substantial membranes.  相似文献   

8.
In vivo biosynthesis of -linolenic acid in plants   总被引:6,自引:0,他引:6  
[1-14C]acetate was readily incorporated into unsaturated fatty acids by leaf slices of spinach, barley and whole cells of Chlorellapyrenoidosa and Candidabogoriensis. In these systems the [14C] label in newly synthesized oleate and linoleate was approximately equally distributed in the C1–9 and the C10–18 fragments obtained by reductive ozonolysis of these acids, whereas in a-linolenic acid over 90% of the total [14C] was localized in the C1–9 fragment. While [1-14C]oleic acid was converted by whole cells of Chlorella to [1-14C]linoleic and [1-14C]linolenic acids, [U-14C]oleic acid yielded [U-14C]linoleic acid but a-linolenic acid was labeled only in the carboxyl terminal carbon atoms. When spinach leaf slices were supplied with carboxyl labeled octanoic, decanoic, dodecanoic, tetradecanoic and octadecanoic acids, only the first three acids were converted to a-linolenic acids while the last two acids were ineffective. Thus we suggest that (a) linoleic acid is not the precursor of a-linolenic acid and (b) 12:3(3, 6, 9) is the earliest permissible trienoic acid which is then elongated to a-linolenic acid.  相似文献   

9.
Three C18 epoxy acids occur in plant cutins and suberins. 9,10-Epoxy-18-hydroxyoctadecanoic acid is a common constituent of both cutins and suberins whilst 9,10-epoxy-18-hydroxyoctadec-12-enoic acid is also present in some cutins. 9,10-Epoxyoctadecane-1,18-dioic acid occurs more commonly in suberins. Epoxy acids may comprise up to 60% of the total monomers obtained from some polymers. The epoxy compounds are readily converted into their corresponding alkoxyhydrin alkyl esters on depolymerization of cutin or suberin by alcoholysis. The chromatographic and MS properties of the alkoxyhydrin derivatives enable them to be readily distinguished from other cutin and suberin hydroxyfatty acids and to be used for the qualitative and quantitative determination of epoxy acids in the polymers.  相似文献   

10.
11.
Lithium aluminum deuteride reduction released aliphatic monomers from the inner seed coat fraction but not from the outer seed coat fraction of mature apples. These monomers were identified by GC/MS and the results indicate that the inner coat of apple seed contains a cutin polymer with the major monomer acids being 18-hydroxyoctadec-9-enoic (31%), 9,10-epoxy-18-hydroxyoctadecanoic (28%) and 9,10,18-trihydroxyoctadecanoic (20 %). The monomer composition of this seed coat cuticular polymer was very similar in seeds taken from freshly harvested fruit and in those taken from fruit which had been stored at 4° for 6 months.  相似文献   

12.

Main conclusion

Arabidopsis was engineered to produce 21.2 % punicic acid in the seed oil. Possible molecular factors limiting further accumulation of the conjugated fatty acid were investigated. Punicic acid (18:3Δ9cis,11trans,13cis ) is a conjugated linolenic acid isomer and is a main component of Punica granatum (pomegranate) seed oil. Medical studies have shown that punicic acid is a nutraceutical with anti-cancer and anti-obesity properties. It has been previously demonstrated that the conjugated double bonds in punicic acid are produced via the catalytic action of fatty acid conjugase (FADX), which is a homolog of the oleate desaturase. This enzyme catalyzes the conversion of the Δ12-double bond of linoleic acid (18:2Δ9cis,12cis ) into conjugated Δ11trans and Δ13cis -double bonds. Previous attempts to produce punicic acid in transgenic Arabidopsis thaliana seeds overexpressing P. granatum FADX resulted in a limited accumulation of punicic acid of up to 4.4 %, accompanied by increased accumulation of oleic acid (18:1?9cis ), suggesting that production of punicic acid in some way inhibits the activity of oleate desaturase (Iwabuchi et al. 2003). In the current study, we applied a new strategy to enhance the production of punicic acid in a high linoleic acid A. thaliana fad3/fae1 mutant background using the combined expression of P. granatum FADX and FAD2. This approach led to the accumulation of punicic acid at the level of 21 % of total fatty acids and restored the natural proportion of oleic acid observed in the A. thaliana fad3/fae1 mutant. In addition, we provide new insights into the high oleate phenotype and describe factors limiting the production of punicic acid in genetically engineered plants.  相似文献   

13.
The structure and composition of the cutin monomers from the flower petals of Vicia faba were determined by hydrogenolysis (LiAlH4) or deuterolysis (LiAlD4) followed by thin layer chromatography and combined gas-liquid chromatography and mass spectrometry. The major components were 10, 16-dihydroxyhexadecanoic acid (79.8%), 9, 16-dihydroxyhexadecanoic acid (4.2%), 16-hydroxyhexadecanoic acid (4.2%), 18-hydroxyoctadecanoic acid (1.6%), and hexadecanoic acid (2.4%). These results show that flower petal cutin is very similar to leaf cutin of V. faba. Developing petals readily incorporated exogenous [1-14C]palmitic acid into cutin. Direct conversion of the exogeneous acid into 16-hydroxyhexadecanoic acid, 10, 16-dihydroxy-, and 9, 16-dihydroxyhexadecanoic acid was demonstrated by radio gas-liquid chromatography of their chemical degradation products. About 1% of the exogenous [1-14C]palmitic acid was incorporated into C27, C29, and C31n-alkanes, which were identified by combined gas-liquid chromatography and mass spectrometry as the major components of the hydrocarbons of V. faba flowers. The radioactivity distribution among these three alkanes (C27, 15%; C29, 48%; C31, 38%) was similar to the per cent composition of the alkanes (C27, 12%; C29, 43%; C31, 44%). [1-14C]Stearic acid was also incorporated into C27, C29, and C31n-alkanes in good yield (3%). Trichloroacetate, which has been postulated to be an inhibitor of fatty acid elongation, inhibited the conversion of [1-14C]stearic acid to alkanes, and the inhibition was greatest for the longer alkanes. Developing flower petals also incorporated exogenous C28, C30, and C32 acids into alkanes in 0.5% to 5% yields. [G-3H]n-octacosanoic acid (C28) was incorporated into C27, C29, and C31n-alkanes. [G-3H]n-triacontanoic acid (C30) was incorporated mainly into C29 and C31 alkanes, whereas [9, 10, 11-3H]n-dotriacontanoic acid (C32) was converted mainly to C31 alkane. Trichloroacetate inhibited the conversion of the exogenous acids into alkanes with carbon chains longer than the exogenous acid, and at the same time increased the amount of the direct decarboxylation product formed. These results clearly demonstrate direct decarboxylation as well as elongation and decarboxylation of exogenous fatty acids, and thus constitute the most direct evidence thus far obtained for an elongation-decarboxylation mechanism for the biosynthesis of alkanes.  相似文献   

14.

Fatty acid desaturases play vital roles in the synthesis of unsaturated fatty acids. In this study, Δ12 and Δ12/Δ15 fatty acid desaturases of the oleaginous yeast Lipomyces starkeyi, termed LsFad2 and LsFad3, respectively, were identified and characterized. Saccharomyces cerevisiae expressing LsFAD2 converted oleic acid (C18:1) to linoleic acid (C18:2), while a strain of LsFAD3-expressing S. cerevisiae converted oleic acid to linoleic acid, and linoleic acid to α-linolenic acid (C18:3), indicating that LsFad2 and LsFad3 were Δ12 and bifunctional Δ12/Δ15 fatty acid desaturases, respectively. The overexpression of LsFAD2 in L. starkeyi caused an accumulation of linoleic acid and a reduction in oleic acid levels. In contrast, overexpression of LsFAD3 induced the production of α-linolenic acid. Deletion of LsFAD2 and LsFAD3 induced the accumulation of oleic acid and linoleic acid, respectively. Our findings are significant for the commercial production of polyunsaturated fatty acids, such as ω-3 polyunsaturated fatty acids, in L. starkeyi.

  相似文献   

15.

Punicic acid (PuA) is a conjugated linolenic acid (C18:3Δ9c,11t,13c) with a wide range of nutraceutic effects with the potential to reduce the incidence of a number of health disorders including diabetes, obesity, and cancer. It is the main component of seed oil from Punica granatum and Trichosanthes kirilowii. Previously, production of relatively high levels of this unusual fatty acid in the seed oil of transgenic Arabidopsis thaliana plant was accomplished by the use of A. thaliana fad3/fae1 mutant high in linoleic acid (18:2∆9c,12c) and by co-expression of P. granatum FATTY ACID CONJUGASE (PgFADX) with Δ12-DESATURASE (FAD2). In the current study, P. granatum cDNAs governing PuA production were introduced into the yeast Schizosaccharomyces pombe. Expression of PgFADX alone resulted in production of PuA at the level of 19.6% of total fatty acids. Co-expression PgFADX with PgFAD2, however, further enhanced PuA content to 25.1% of total fatty acids, the highest level reported to date for heterologous expression. Therefore, microbial systems can be considered as a potential alternative to plant sources for a source of PuA for nutraceutic applications.

  相似文献   

16.
《Phytochemistry》1998,47(4):527-537
The relevance of the postulated pathway from linoleic acid to dihydrojasmonic acid is analysed. Pentacyclic oxylipins having pentenyl or pentyl side chains were tested for their secondary metabolite inducing activity in seven different plant cell culture species which all responded well to 12-oxo-phytodienoic acid and jasmonic acid. The response towards the dihydro-derivatives 15,16-dihydro-12-oxo-phytodienoic acid and 9,10-dihydrojasmonic acid ranged from strong activity in Eschscholzia californica to no activity in Lycopersicon esculentum. 15,16-Dihydro-12-oxo-phytodienoic acid can be formed from linoleic acid (18:2) by a linseed acetone powder enzyme preparation. Application experiments with linoleic (18:2) and linolenic acid (18:3) showed that the bottleneck of the 18:2 pathway is most likely the cyclization of the intermediate allene oxide when compared to the ease by which 15,16-dihydro-12-oxo-phytodienoic acid is converted to dihydrojasmonic acid in plant systems. The metabolism of potential precursors of jasmonic and dihydrojasmonic acid was extensively studied in various cell cultures.  相似文献   

17.
9-Hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic acids deriving from type II (i.e. involving 1O2) photooxidation of 18-hydroxyoleic acid were detected after visible light-induced senescence experiments carried out with Petroselinum sativum and subsequent cutin depolymerisation. These results showed that in senescent plants, where the 1O2 formation rate exceeds the quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts and affect the unsaturated components of cutins. Significant amounts of 9,18-dihydroxyoctadec-10(trans)-enoic and 10,18-dihydroxyoctadec-8(trans)-enoic acids resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also detected in different natural samples. These results well support the significance of the photooxidation of the unsaturated components of higher plant cutins in the natural environment.  相似文献   

18.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   

19.
A transient anaerobic stress of Tetrahymena pyriformis NT-1 for 1 h resulted in slight decreases of unsaturated fatty acids in overall lipid composition. The rates of incorporation of [3H]palmitic acid plus sodium [14C]acetate into unsaturated fatty acids (palmitoleate, 16:1Δ9; oleate, 18:1Δ9; linoleate, 18:2Δ9,12; γ-linolenate, 18:3Δ6,9,12) were drastically reduced by exposing cells to anaerobic conditions for 1 h (anaerobic cells), and thereafter restored to the original levels at 4 h after subsequent reaeration. Activities of Δ9- and Δ12-desaturases (palmitoyl-CoA, stearoyl-CoA, oleoyl-CoA) and the terminal component of the desaturation system (cyanide-sensitive factor) decreased to 25–30% in microsomes from anaerobic cells, compared to those from control and reaerobic cells. Furthermore, changes induced by the anaerobic shock in the activities of microsomal reductases and the content of cytochrome b5 were observed to behave comparably to changes in activities of fatty acyl-CoA desaturases. During the anaerobic state, the half-lives of microsomal enzyme activities (desaturases, cyanide-sensitive factor, reductases) and cytochrome b5 content were diminished to 30–50% of those of control microsomes. But the Km values of these enzymes did not differ between microsomes from either anaerobic or control cells. These results suggest that the decreased activities of desaturases during anaerobic stress result principally from the reduction of cyanide-sensitive factor content, which would be caused by its instability and repressed synthesis.  相似文献   

20.
Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号