首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NK cells are important for the clearance of tumors, parasites, and virus-infected cells. Thus, factors that control NK cell numbers and function are critical for the innate immune response. A subset of NK cells express the inhibitory killer cell lectin-like receptor G1 (KLRG1). In this study, we identify that KLRG1 expression is acquired during periods of NK cell division such as development and homeostatic proliferation. KLRG1(+) NK cells are mature in phenotype, and we show for the first time that these cells have a slower in vivo turnover rate, reduced proliferative response to IL-15, and poorer homeostatic expansion potential compared with mature NK cells lacking KLRG1. Transfer into lymphopenic recipients indicate that KLRG1(-) NK cells are precursors of KLRG1(+) NK cells and KLRG1 expression accumulates following cell division. Furthermore, KLRG1(+) NK cells represent a significantly greater proportion of NK cells in mice with enhanced NK cell numbers such as Cd45(-/-) mice. These data indicate that NK cells acquire KLRG1 on their surface during development, and this expression correlates with functional distinctions from other peripheral NK cells in vivo.  相似文献   

2.
In this study, we describe a new population of NK cells that reside in the normal, uninflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b(-), CD27(+) immature splenic NK cells, as well as liver NK cells, but they differ in their expression of CD62L, TRAIL, and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF, and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred i.v. into RAGγc knockout mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, whereas the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue-resident NK cells, but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells.  相似文献   

3.
Transfer of naive CD4 T cells into lymphopenic mice initiates a proliferative response of the transferred cells, often referred to as homeostatic proliferation. Careful analysis reveals that some of the transferred cells proliferate rapidly and undergo robust differentiation to memory cells, a process we have designated spontaneous proliferation, and other cells proliferate relatively slowly and show more limited evidence of differentiation. In this study we report that spontaneous proliferation is IL-7 independent, whereas the slow proliferation (referred to as homeostatic proliferation) is IL-7 dependent. Administration of IL-7 induces homeostatic proliferation of naive CD4 T cells even within wild-type recipients. Moreover, the activation/differentiation pattern of the two responses are clearly distinguishable, indicating that different activation mechanisms may be involved. Our results reveal the complexity and heterogeneity of lymphopenia-driven T cell proliferation and suggest that they may have fundamentally distinct roles in the maintenance of CD4 T cell homeostasis.  相似文献   

4.
The size of the T lymphocyte pool is maintained by regulation of T cell production, proliferation, and survival. Under the pressure of a T lymphopenic environment, mature naive T cells begin to proliferate in the absence of Ag, a process called homeostatic expansion. Homeostatic expansion involves TCR recognition of self peptide/MHC ligands, but less is known about the soluble factors that regulate this process. Here we show that IL-12 dramatically enhanced the homeostatic proliferation of CD8 T cells. In contrast, IL-2 had no beneficial effect on homeostatic expansion and, in fact, inhibited T cell expansion induced by IL-12. Using gene-targeted mice, we showed that IL-12 acted directly on the T cells to enhance homeostatic expansion, but that IL-12 cannot override the requirement for TCR interaction with self peptide/MHC ligands in homeostatic expansion. These data indicate that inflammatory cytokines may modulate T cell homeostasis after lymphopenia and have implications for regulation of the T cell repertoire and autoimmunity.  相似文献   

5.
Regulation of T cell homeostasis by the transmembrane adaptor protein SIT   总被引:1,自引:0,他引:1  
The transmembrane adaptor protein SIT is a negative regulator of TCR-mediated signaling. However, little is known about the functional role of SIT in mature T cells. In this study, we show that mice deficient for SIT display a decreased number of naive CD8(+) T cells and a progressive accumulation of memory-like (CD44(high)) CD8(+) T lymphocytes that resemble cells undergoing homeostatic proliferation. Indeed, when transferred into lymphopenic hosts, SIT(-/-) naive CD8(+) T cells undergo enhanced homeostatic proliferation and express a higher level of CD44 in comparison to wild-type T cells. By using class-I-restricted TCR transgenic models with different ligand affinity/avidity, we show that lymphopenia-induced homeostatic proliferation is more pronounced in cells carrying low-affinity TCRs. Strikingly, the loss of SIT induces homeostatic proliferation of HY TCR transgenic cells, which are normally unable to proliferate in lymphopenic mice. Collectively, these data demonstrate that SIT negatively regulates T cell homeostasis. Finally, we show that SIT-deficient T cells develop a mechanism analogous to sensory adaptation as they up-regulate CD5, down-regulate the coreceptor, and display impaired TCR-mediated ZAP-70 activation.  相似文献   

6.
Naive T cells undergo slow homeostatic proliferation in response to T cell lymphopenia, which is also called lymphopenia-induced proliferation (LIP). IL-7 is critically required for this process, but previous studies suggested IL-15 was expendable for LIP of naive CD8 T cells. In contrast, we show that IL-15 is important for sustained CD8 T cell proliferation and accumulation in a lymphopenic setting, as revealed by truncated LIP in IL-15(-/-) hosts. At the same time, we find that IL-12 enhances LIP by acting directly on the CD8 T cells and independently of IL-15, suggesting distinct pathways by which cytokines can regulate homeostatic proliferation. Interestingly, the memory-phenotype CD8 T cell generated by LIP in IL-15(-/-) hosts are phenotypically distinct from the rare endogenous memory-phenotype cells found in IL-15(-/-) animals, suggesting these cells are generated by different means. These findings demonstrate that cytokine requirements for LIP change during the process itself, illustrating the need to identify factors that regulate successive stages of lymphopenia-driven proliferation.  相似文献   

7.
NK T cells are a lymphocyte lineage that is selected by CD1d and is characterized by the ability to rapidly secrete large amounts of both IFN-gamma and IL-4 after TCR stimulation. Using reactivity to CD1d tetramers to define presumptive NK T cells, several NK T cell progenitor populations were characterized based upon NK marker expression and CD4 vs CD8 expression. The earliest populations were found to be negative for NK markers and could proliferate to IL-7, while mature NK T cells did not. The NK1.1(-) NK T cell progenitors were capable of up-regulating NK1.1 when transferred in vivo. Upon stimulation, the NK1.1(-) populations secrete IL-4, but little IFN-gamma. As the cells mature and up-regulate NK1.1, they acquire the ability to secrete IFN-gamma. Finally, the Tec family tyrosine kinase Itk is necessary for optimal NK1.1 up-regulation and hence final maturation of NK T cells. The itk(-/-) mice also display a progressive decrease in NK T cells in older animals, suggesting a further role in peripheral maintenance.  相似文献   

8.
In mice lacking IL-15, NK cell development is arrested at immature stages, providing an opportunity to investigate the earliest developing NK cells that would respond to IL-15. We show in this study that immature NK cells were present in the spleen as well as bone marrow (BM) and contained IL-15-high-responder cells. Thus, mature NK cells were generated more efficiently from IL-15(-/-) than from control donor cells in radiation BM chimeras, and the rate of IL-15-induced cell division in vitro was higher in NK cells in the spleen and BM from IL-15(-/-) mice than in those from wild-type mice. Phenotypically, NK cells developed in IL-15(-/-) mice up to the minor but discrete CD11b(-)CD27(+)DX5(hi)CD51(dull)CD127(dull)CD122(hi) stage, which contained the majority of Ly49G2(+) and D(+) NK cells both in the spleen and BM. Even among wild-type splenic NK cells, IL-15-induced proliferation was most prominent in CD11b(-)DX5(hi) cells. Notably, IL-15-mediated preferential expansion (but not conversion from Ly49(-) cells) of Ly49(+) NK cells was observed in vitro only for NK cells in the spleen. These observations indicated the uneven distribution of NK cells of different developing stages with variable IL-15 responsiveness in these lymphoid organs. Immature NK cells in the spleen may contribute, as auxiliaries to those in BM, to the mature NK cell compartment through IL-15-driven extramarrow expansion under steady-state or inflammatory conditions.  相似文献   

9.
The peripheral lymphocyte pool size is governed by homeostatic mechanisms. Thus, grafted T cells expand and replenish T cell compartments in lymphopenic hosts. Lymphopenia-driven proliferation of naive CD8+ T cells depends on self-peptide/MHC class I complexes and the cytokine IL-7. Lymphopenia-driven proliferation and maintenance of memory CD8+ T cells are MHC independent, but are believed to require IL-7 and contact with a bone marrow-derived cell that presents the cytokine IL-15 by virtue of its high affinity receptor (IL-15Ralpha). In this study we show that optimal spontaneous proliferation of grafted naive and memory CD8+ T cells in mice rendered lymphopenic through gene ablation or irradiation requires the presence of CD11chigh dendritic cells. Our results suggest a dual role of CD11chigh dendritic cells as unique APC and cytokine-presenting cells.  相似文献   

10.
Homeostatic proliferation for naive T cells is observed readily only under lymphopenic conditions in response to elevated levels of IL-7 and contact with self-MHC/peptide ligands. Homeostatic proliferation occurs at a slow pace and gradually induces the dividing cells to acquire characteristics of memory cells. We describe a novel type of homeostatic proliferation whereby naive T cells proliferate at a significantly faster rate, resembling the proliferation speed induced by foreign Ags, and the expanding cells rapidly differentiate into central memory cells. Remarkably, such rapid homeostatic proliferation is driven by a combination of IL-2 and IL-15, with IL-15 playing a bigger role, and applies for a wide repertoire of CD8(+) naive T cells, including many TCR-transgenic lines, even those that fail to undergo IL-7-driven homeostatic proliferation. Thus, naive T cells can be induced to undergo homeostatic proliferation of variable speed with a few members of the common gamma-chain (CD132) family of cytokines, the speed of proliferation depending on the levels of the particular cytokine involved.  相似文献   

11.
Although recent work has suggested that lymphopenia-induced homeostatic proliferation may improve T cell-mediated tumor rejection, there is little direct evidence isolating homeostatic proliferation as an experimental variable, and the mechanism by which improved antitumor immunity occurs via homeostatic proliferation is poorly understood. An adoptive transfer model was developed in which tumor-specific 2C/RAG2(-/-) TCR transgenic CD8+ T cells were introduced either into the lymphopenic environment of RAG2(-/-) mice or into P14/RAG2(-/-) mice containing an irrelevant CD8+ TCR transgenic population. RAG2(-/-), but not P14/RAG2(-/-) recipients supported homeostatic proliferation of transferred T cells as well as tumor rejection. Despite absence of tumor rejection in P14/RAG2(-/-) recipients, 2C cells did become activated, as reflected by CFSE dilution and CD44 up-regulation. However, these cells showed poor IFN-gamma and IL-2 production upon restimulation, consistent with T cell anergy and similar to the hyporesponsiveness induced by administration of soluble peptide Ag. To determine whether homeostatic proliferation could uncouple T cell anergy, anergic 2C cells were transferred into RAG(-/-) recipients, which resulted in vigorous homeostatic proliferation, recovery of IL-2 production, and acquisition of the ability to reject tumors. Taken together, our data suggest that a major mechanism by which homeostatic proliferation supports tumor rejection is by maintaining and/or re-establishing T cell responsiveness.  相似文献   

12.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

13.
IL-7, a member of the common gamma-chain family of cytokines, is essential for B and T lymphocyte development and homeostasis of mature T cell subsets. Thus, naive and memory T cells are both dependent on IL-7 for survival and homeostatic proliferation under lymphopenic conditions. In line with prior findings with IL-2, we show in this study that the biological activity of IL-7 in vivo is greatly increased by association with anti-IL-7 mAb. Under in vivo conditions, IL-7/mAb complexes displayed 50- to 100-fold higher activity than free IL-7 and induced massive expansion of pre-B cells. IL-7/mAb complexes also increased thymopoiesis in normal mice and restored thymopoeisis in IL-7-deficient mice. For mature T cells, IL-7/mAb complexes induced marked homeostatic proliferation of both naive and memory CD4(+) and CD8(+) cell subsets even under normal T cell-replete conditions. Finally, IL-7/mAb complexes were able to enhance the magnitude of the primary response of Ag-specific naive CD8(+) cells. The strong stimulatory activity of IL-7/mAb complexes could be useful for treatment of immunodeficiency and cancer.  相似文献   

14.
In aged mice the population of mature peripheral B cells is maintained despite a severalfold decrease in the population of bone marrow B cell progenitors. The analysis of the rate of accumulation of 5'-bromo-2-deoxyuridine (BrdU)-labeled splenic B cells in mice fed BrdU for 8 days to 8 wk demonstrated a severalfold increase in the half-life of mature B cells in aged mice. Consistent with a role for decreased B cell turnover in maintaining the mature B cell population of aged mice, several findings indicate that fewer newly generated B cells enter the spleen from the bone marrow in aged vs young adult mice. These include 1) a fourfold decrease in the population of relatively immature splenic B cells, defined as cells that express high levels of heat-stable Ag and accumulate BrdU within 8 wk of labeling; and 2) an equivalent decrease in the population of bone marrow cells representative of later stages of B cell maturation (sIgD-sIgM(int-high)). Surprisingly, despite a four- to sixfold decrease in pre-B cells, the population of least mature bone marrow B cells (IgD-sIgM(very low)) remains intact. Because this population accumulates BrdU-labeled cells more slowly in aged mice than in younger mice, and bone marrow B cells at more mature developmental stages are diminished, it appears that in aged mice B cell development beyond the sIgM(very low) stage may be retarded and that cells, therefore, accumulate within this population.  相似文献   

15.
Lymphopenia-induced proliferation (LIP) is a proliferative program initiated in response to T cell insufficiency caused by acute or chronic immunodepletion. Studies of lymphopenic mice have demonstrated that the cytokine IL-7 and TCR signaling are critical for LIP. We examined how these two factors impact T cell proliferation following transfer into moderately lymphopenic mice. In this study, we show that moderate lymphopenia (~25% of wild-type lymphocytes) of IL-7Rα knock-in mutant (IL-7Rα(449F)) mice supports T cell proliferation, although with decreased frequency and kinetics compared with cells transferred to severely lymphopenic (5% of wild-type lymphocytes) IL-7Rα(-/-) hosts. Although previous studies have demonstrated that elevated IL-7 levels play an important role in LIP, IL-7 availability was not elevated in IL-7Rα(449F) mice. However, moderate lymphopenia increased access of transferred T cells to self-peptide presented on APCs that can trigger TCR signaling and proliferation. Importantly, we did not detect significant changes in TCR Vβ usage of proliferated T cells recovered from either moderately or severely lymphopenic hosts. Our work demonstrates that polyclonal T cells retain a diverse TCR repertoire following proliferation mediated by either self-peptide-MHC interaction alone or in combination with IL-7, and that T cell reconstitution is most efficient in the presence of increased IL-7 availability.  相似文献   

16.
NK cells differentiate in adult mice from bone marrow hemopoietic progenitors. Cytokines, including those that signal via receptors using the common cytokine receptor gamma-chain (gamma(c)), have been implicated at various stages of NK cell development. We have previously described committed NK cell precursors (NKPs), which have the capacity to generate NK cells, but not B, T, erythroid, or myeloid cells, after in vitro culture or transfer to a fetal thymic microenvironment. NKPs express the CD122 Ag (beta chain of the receptors for IL-2/IL-15), but lack other mature NK markers, including NK1.1, CD49b (DX5), or members of the Ly49 gene family. In this report, we have analyzed the roles for gamma(c)-dependent cytokines in the generation of bone marrow NKP and in their subsequent differentiation to mature NK cells in vivo. Normal numbers of NKPs are found in gamma(c)-deficient mice, suggesting that NK cell commitment is not dependent on IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. Although IL-2, IL-4, and IL-7 have been reported to influence NK cell differentiation, we find that mice deficient in any or all of these cytokines have normal NK cell numbers, phenotype, and effector functions. In contrast, IL-15 plays a dominant role in early NK cell differentiation by maintaining normal numbers of immature and mature NK cells in the bone marrow and spleen. Surprisingly, the few residual NK cells generated in absence of IL-15 appear relatively mature, expressing a variety of Ly49 receptors and demonstrating lytic and cytokine production capacity.  相似文献   

17.
Donor NK cells could promote engraftment by suppressing host alloreactive responses during allogeneic bone marrow transplantation (allo-BMT). The biological activity of NK cells could be significantly enhanced by IL-15. The current study attempted to evaluate the effect of donor NK cells and IL-15 administration on engraftment and immune reconstitution in a murine nonmyeloablative allo-BMT model. Mice infused with donor NK cells and treated with IL-15 during nonmyeloablative allo-BMT resulted in increased donor engraftment compared with either treatment alone. The number of donor-derived cell subsets also increased in the spleen of the recipient mice with combination treatment. The alloreactivity to donor type Ags was significantly reduced in the recipient mice with donor NK cell infusion and IL-15 treatment, which was manifested by decreased proliferation and IL-2 secretion of splenocytes from recipient mice in response to donor type Ags in MLR and decreased capacity of the splenocytes killing donor type tumor targets. We subsequently exposed recipient mice to reduced irradiation conditioning and showed that donor NK cell infusion and hydrodynamic injection-mediated IL-15 expression could synergistically promote donor engraftment and suppress alloreactivity during nonmyeloablative allo-BMT. Infusion of CFSE-labeled donor CD45.1(+) NK cells demonstrated that IL-15 could enhance the infused donor NK cell proliferation and function in vivo. IL-15 treatment also promoted donor bone marrow-derived NK cell development and function. Thus, donor NK cell infusion and IL-15 treatment could synergistically promote the engraftment and the development of donor-derived cell subsets and suppress the host alloresponse in a murine nonmyeloablative allo-BMT model.  相似文献   

18.
Murine T cells adoptively transferred into syngeneic lymphopenic recipients undergo proliferation. Despite continued cell division, this lymphopenia-induced or homeostatic proliferation of a limited number of transferred T cells does not fill the T cell compartment. The continued expansion of the transferred T cells, even after stable T cell numbers have been reached, suggests that active cell death prevents further increase in T cell number. In this study, we show that wild-type T cells undergoing homeostatic proliferation are sensitive to Fas-mediated cell death. In the absence of Fas, T cells accumulate to significantly higher levels after transfer into lymphopenic recipients. Fas is, thus, a principal regulator of the expansion of peripheral T cells in response to self-peptide/MHC during T cell homeostasis. As Fas-deficient lpr mice manifest no significant abnormalities in thymic negative selection or in foreign Ag-induced peripheral T cell deletion, their lymphadenopathy may result from unrestrained homeostatic proliferation.  相似文献   

19.
Previous work from our laboratory showed that hydrocortisone (HC) combined with IL-15 induces expansion of activated human NK cells. We set up an experimental tumor model to evaluate the use of adoptively transferred, HC plus IL-15 (HC/IL-15)-activated and -expanded murine NK cells in the treatment of syngeneic mice carrying established lung metastases of the CT26 transplantable tumor. We also examined the effect of denileukin diftitox (Ontak) on the depletion of regulatory T cells to enhance the in vivo antitumor immunity induced by the adoptively transferred NK cells. Our results clearly demonstrate that murine DX5(+) NK cells are largely expanded in the presence of IL-15 plus HC while retaining intact their functional status. Moreover, when intravenously infused, they mediated significant antitumor responses against CT26 lung tumors in syngeneic BALB/c animals that were further enhanced upon pretreatment of the tumor-bearing animals with Ontak. Total splenocytes and isolated splenic T cells from NK-treated mice responded in vitro against CT26 tumor cells as evidenced by IFN-γ-based ELISPOT, proliferation, and cytotoxicity assays. Importantly, animals treated with Ontak plus adoptive transfer of HC/IL-15-expanded NK cells significantly retarded CT26 tumor growth after a rechallenge with the same tumor s.c. in their flanks. Taken altogether, our data suggest that NK cell adoptive transfer can trigger adaptive antitumor T cell responses, and regulatory T cell depletion by Ontak is mandatory for enabling HC/IL-15-activated NK cells to promote long-lasting adaptive antitumor immunity.  相似文献   

20.
To examine directly whether a limited number of naive T cells transferred to lymphopenic hosts can truly fill the peripheral naive T cell pool, we compared the expansion and phenotype of naive T cells transferred to three different hosts, namely recombination-activating gene-deficient mice, CD3epsilon-deficient mice, and irradiated normal mice. In all three recipients, the absolute number of recovered cells was much smaller than in normal mice. In addition, transferred naive T cells acquired a memory-like phenotype that remained stable with time. Finally, injected cells were rapidly replaced by host thymic migrants in irradiated normal mice. Only continuous output of naive T cells by the thymus can generate a full compartment of truly naive T cells. Thus, conversion of naive T cells to a memory-like phenotype in lymphopenic hosts is not related to a homeostatic mechanism that fills the peripheral naive T cell pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号