共查询到20条相似文献,搜索用时 0 毫秒
1.
Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine 总被引:14,自引:0,他引:14
The three-dimensional structure of the native unliganded form of the Leu/Ile/Val-binding protein (Mr = 36,700), an essential component of the high-affinity active transport system for the branched aliphatic amino acids in Escherichia coli, has been determined and further refined to a crystallographic R-factor of 0.17 at 2.4 A resolution. The entire structure consists of 2710 non-hydrogen atoms from the complete sequence of 344 residues and 121 ordered water molecules. Bond lengths and angle distances in the refined model have root-mean-square deviations from ideal values of 0.05 A and 0.10 A, respectively. The overall shape of the protein is a prolate ellipsoid with dimensions of 35 A x 40 A x 70 A. The protein consists of two distinct globular domains linked by three short peptide segments which, though widely separated in the sequence, are proximal in the tertiary structure and form the base of the deep cleft between the two domains. Although each domain is built from polypeptide segments located in both the amino (N) and the carboxy (C) terminal halves, both domains exhibit very similar supersecondary structures, consisting of a central beta-sheet of seven strands flanked on either side by two or three helices. The two domains are far apart from each other, leaving the cleft wide open by about 18 A. The cleft has a depth of about 15 A and a base of about 14 A x 16 A. Refining independently the structure of native Leu/Ile/Val-binding protein crystals soaked in a solution containing L-leucine at 2.8 A resolution (R-factor = 0.15), we have been able to locate and characterize an initial, major portion of the substrate-binding site of the Leu/Ile/Val-binding protein. The binding of the L-leucine substrate does not alter the native crystal structure, and the L-leucine is lodged in a crevice on the wall of the N-domain, which is in the inter-domain cleft. The L-leucine is held in place primarily by hydrogen-bonding of its alpha-ammonium and alpha-carboxylate groups with main-chain peptide units and hydroxyl side-chain groups; there are no salt-linkages. The charges on the leucine zwitterion are stabilized by hydrogen-bond dipoles. The side-chain of the L-leucine substrate lies in a depression lined with non-polar residues, including Leu77, which confers specificity to the site by stacking with the side-chain of the leucine substrate.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
2.
3.
Altering the binding activity and specificity of the leucine binding proteins of Escherichia coli 总被引:1,自引:0,他引:1
Two leucine-binding proteins with overlapping specificities for the branched-chain amino acids are present in Escherichia coli. In order to study the basis of specificity for the very similar hydrophobic ligands, we have constructed a series of site-directed mutants of both proteins based on inspection of the leucine-isoleucine-valine-binding protein crystal structure reported by Sack et al. (Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989) J. Mol. Biol. 206, 171-191). Each of the mutant proteins was overexpressed and purified, and their binding activity for a wide variety of potential ligands was measured. By introducing a common restriction endonuclease cleavage site in the two proteins, two hybrid binding proteins consisting of the amino-terminal third of one binding protein fused to the carboxyl-terminal two-thirds of the other were created. The results of these studies indicated that the binding site of the leucine-isoleucine-valine binding protein can accommodate a branch at the beta-carbon of the ligand and that hydrophilic groups on the ligand can be accommodated only in certain orientations. None of the single amino acid substitutions resulted in complete switches in specificity between the two proteins, suggesting that additional residues are involved in leucine binding and discrimination among the branched-chain amino acid substrates. 相似文献
4.
5.
6.
7.
8.
9.
Several analogues of valine, leucine, and isoleucine carrying hydroxyl groups in the gamma- or delta-position have been tested in the aminoacylation of tRNA by valyl-tRNA synthetases from Saccharomyces cerevisiae and Escherichia coli. Results of the ATP/PPi exchange and of the aminoacylation reactions indicate that the amino acid analogues not only can form the aminoacyl adenylate intermediate but are also transferred to tRNA. However, the fact that the reaction consumes an excess of ATP indicates that the misactivated amino acid analogue is hydrolytically removed. Thus, valyl-tRNA synthetase from S. cerevisiae shows a high fidelity in forming valyl-tRNA. Although the much bulkier amino acid analogues allo- and iso-gamma-hydroxyvaline and allo- and iso-gamma-hydroxyisoleucine are initially charged to tRNA, the misaminoacylated tRNA(Val) is enzymatically deacylated. This cleavage reaction is mediated by the hydroxyl groups of the amino acid analogues which are converted into the corresponding lactones. 相似文献
10.
Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein 总被引:6,自引:0,他引:6
Due to its extreme insolubility, Fe3+ is not transported as a monoatomic ion. In microbes, iron is bound to low molecular weight carriers, designated siderophores. For uptake into cells of Escherichia coli Fe3+ siderophores have to be translocated across two membranes. Transport across the outer membrane is receptor-dependent and energy-coupled; transport across the cytoplasmic membrane seems to follow a periplasmic binding protein-dependent transport mechanism. In support of this notion we demonstrate specific binding of the Fe3+ hydroxamate compounds ferrichrome, aerobactin, and coprogen, which are transported via the Fhu system, to the periplasmic FhuD protein, and no binding of the transport inactive ferrichrome A, ferric citrate, and iron sulfate. About 10(4) ferrichrome molecules were bound to the FhuD protein of cells which overproduced plasmid-encoded FhuD. Binding depended on transport across the outer membrane mediated by the FhuA receptor and the TonB protein. Binding to FhuD was supported by the exclusive resistance of FhuD to proteinase K in the presence of the transport active hydroxamates. The overproduced precursor form of the FhuD protein was not protected by the Fe3+ hydroxamates indicating a conformation different to the mature form. The FhuD protein apparently serves as a periplasmic carrier for Fe3+ hydroxamates with widely different structures. 相似文献
11.
12.
13.
A mutant of the Escherichia coli lactose carrier has been selected (in an invertase-positive strain) based on its ability to grow on 6 mM sucrose in a manner dependent upon lactose carrier induction by isopropyl-1-thio-beta-D-galactopyranoside. The mutant was cloned, and DNA sequencing revealed a point mutation in lacY which changed alanine 177 to valine. The valine 177 mutation increased the transport rate for both [14C]sucrose and the maltose analog 4-nitrophenyl-alpha-maltoside. The potency for inhibition of beta-ONPG transport by several sugars containing the glucopyranosyl moiety (maltose, cellobiose, or palatinose) was increased significantly relative to the parental carrier. Similar experiments showed that the mutation did not affect the affinity for such commonly studied substrates as 4-nitrophenyl-alpha-D-galactopyranoside and beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside. These data indicate that gross structural alteration of the galactoside binding site cannot account for increased transport of sucrose and maltose by the valine 177 mutant. We conclude that effects of the valine 177 mutation are not limited strictly to changes in observed sugar affinity and that sugar-specific changes in turnover number may be an important determinant of the altered spectrum of sugar specificities exhibited by the Val-177 carrier. These phenomena may be related to the effect of this mutation on proton recognition (described in King, S.C., and Wilson, T.H. (1990) J. Biol. Chem. 265, 9645-9651). 相似文献
14.
Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli. 总被引:1,自引:2,他引:1
下载免费PDF全文

The periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli transport sn-glycerol-3-phosphate and maltose, respectively. The UgpC and MalK proteins of these transport systems, which couple energy to the transport process by ATP-hydrolysis, are highly homologous, suggesting that they might be functionally exchangeable. Complementation experiments showed that UgpC expression could restore growth of a malK mutant on maltose as a carbon source, provided that it was expressed at a sufficiently high level in the absence of the integral inner membrane components UgpA and/or UgpE of the Ugp system. Conversely, MalK expression could complement ugpC mutants and restore the utilization of sn-glycerol-3-phosphate as a phosphate source. The hybrid transporters appeared to be less efficient than the wild-type systems. The complementation of ugpC mutations by MalK was strongly inhibited by the presence of glucose or alpha-methylglucoside, which are substrates of the phosphotransferase system. This inhibition is probably due to hypersensitivity of the hybrid UgpBAE-MalK transporter to inducer exclusion. UgpC expression did not complement the regulatory function of MalK in mal gene expression. The exchangeability of UgpC and MalK indicates that these proteins do not contribute to a substrate-binding site conferring substrate specificity to the transporter. These are the first examples of functional, hybrid periplasmic permeases in which the energy-coupling components could be functionally exchanged. 相似文献
15.
The genes encoding the leucine binding proteins in E coli have been cloned and their DNA sequences have been determined. One of the binding proteins (LIV-BP) binds leucine, isoleucine, valine, threonine, and alanine, whereas the other (LS-BP) binds only the D- and L-isomers of leucine. These proteins bind their solutes as they enter the periplasm, then interact with three membrane components, livH, livG, and livM, to achieve the translocation of the solute across the bacterial cell membrane. Another feature of the binding proteins is that they must be secreted into the periplasmic space where they carry out their function. The amino acid sequence of the two binding proteins is 80% homologous, indicating that they are the products of an ancestral gene duplication. Because of these characteristics of the leucine binding proteins, we are using them as models for studying the relationships between protein structure and function. 相似文献
16.
17.
Lithium ion-sugar cotransport via the melibiose transport system in Escherichia coli. Measurement of Li+ transport and specificity 总被引:5,自引:0,他引:5
A lithium ion-selective electrode was constructed using N,N'-diheptyl-N,N'-5,5-tetramethyl-3,7-dioxanonandiamid as a Li+ ionophore. Lithium ion-sugar cotransport via the melibiose transport system was measured with this electrode. Influx of methyl-beta-D-thiogalactoside, methyl-alpha-D-galactoside, methyl-beta-D-galactoside, and D-galactose elicited uptake of Li+. This Li+ uptake was not observed when the melibiose carrier was not present in the cells or the carrier was inactivated. Melibiose caused a small amount of Li+ uptake, indicating that Li+-melibiose cotransport proceeds inefficiently. Raffinose, another substrate, did not cause detectable Li+ transport. In mutant cells which showed altered cation coupling (Niiya, S., Yamasaki, K., Wilson, T. H., and Tsuchiya, T. (1982) J. Biol. Chem. 257, 8902-8906), Li+-melibiose cotransport was clearly demonstrated. Alteration in substrate specificity was also shown in the mutants. 相似文献
18.
Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli 总被引:3,自引:0,他引:3
In the Escherichia coli chemosensory pathway, receptor modification mediates adaptation to ligand. Evidence is presented that covalent modification influences ligand binding to receptors in complexes with CheW and the kinase CheA. Kinase inhibition was measured with serine receptor complexes in different modification levels; Ki for serine-mediated inhibition increased 10,000-fold from the lowest to the highest level. Without CheA and CheW, ligand binding is unaffected by covalent modification; thus, the influence of covalent modification is mediated only in the receptor complex, a conclusion supported by an analogy to allosteric enzymes and the observation of cooperative kinase inhibition. Also, the finding that a subsaturating serine concentration accelerates active receptor-kinase complex assembly implies that the assembly/disassembly process may also contribute to kinase regulation. 相似文献
19.
Ruth Levitz Ilan Friedberg Ruth Brucker Asora Fux Ezra Yagil 《Molecular & general genetics : MGG》1985,200(1):118-122
Summary The periplasmic phosphate binding protein is a product of the phoS gene and is an essential component of the phosphate specific transport (PST) system, which mediates Pi uptake in Escherichia coli. The binding of Pi to periplasmic protein(s) and the kinetic parameters of Pi uptake were studied in phoT and pstB mutants of E. coli. These mutants are impaired in Pi uptake but have a periplasmic Pi-binding protein whose Pi-binding acpacity was estimated by the retention kinetics. The Pi-binding activity in two pstB mutants was found to be weaker as compared to phoT9 and the wild type. The K
D values for Pi binding to periplasmic protein were determined by equilibrium dialysis. In the pstB mutants the K
D value was found to be 9–31 times higher than the values obtained for the wild type and the phoT mutant. The apparent K
m values for Pi uptake in one pstB mutant is 14.3 times higher than in the wild type. V
max of the mutant is 8.3 times lower that of the wild type. The data indicate that pstB, an essential gene of the PST transport system, is promoting the binding capacity of the Pi-binding protein.Abbreviations AP
alkaline phosphatase
- Pi
inorganic orthophosphate
- Km
kanamycin 相似文献
20.
The intracellular concentrations of the valine and leucine pathway intermediates in a Corynebacterium glutamicum strain were measured during a transient state. The data were obtained by performing a glucose stimulus-response experiment with the use of a rapid sampling device and advanced mass spectrometry. The glucose stimulus resulted in a 3-fold increase in the intracellular pyruvate concentration within less than a second, demonstrating the very fast interactions in metabolic networks. The samples were taken at subsecond intervals for a time period of 25 s. The time courses of the metabolite concentrations formed the experimental basis of a mathematical model simulating the fluxes and concentrations in the valine/leucine pathway. The implementation of a model selection criterion based on the second law of thermodynamics is demonstrated to be essential for the identification of realistic and unique models. Large differences between the enzyme properties determined in vitro and those determined in vivo by the model were observed with the in vivo maximal rates being almost an order of magnitude larger than the in vitro maximal rates. The transamination of ketoisovalerate (KIV) to valine is carried out mainly by the transaminase B enzyme, with the transaminase C enzyme playing a minor role. The availability of the cofactors NADP and NADPH only has modest influence on the flux through the valine pathway, while the influence of NAD and NADH on the flux through the leucine pathway is negligible. 相似文献