首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lycopersicon esculentum seeds germinate after rehydration in complete darkness. This response was inhibited by a far-red light (FR) pulse, and the inhibition was reversed by a red light (R) pulse. Comparison of germination in phytochrome-deficient mutants (phyA, phyB1, phyB2, phyAB1, phyB1B2 and phyAB1B2) showed that phytochrome B2 (PhyB2) mediates both responses. The germination was inhibited by strong continuous R (38 micromol m(-2) s(-1)), whereas weak R (28 nmol m(-2) s(-1)) stimulated seed germination. Hourly applied R pulses of the same photon fluence partially replaced the effect of strong continuous R. This response was called 'antagonistic' because it counteracts the low fluence response (LFR) induced by a single R pulse. This antagonistic response might be an adaptation to a situation where the seeds sit on the soil surface in full sunlight (adverse for germination), while weak R might reflect that situation under a layer of soil. Unexpectedly, the effects of continuous R or repeated R pulses were mediated by phytochrome A (PhyA). We therefore suggest that low levels of PhyA in its FR-absorbing form (Pfr) cause inhibition of seed germination produced either by extended R irradiation (by degradation of PhyA-Pfr) or by extended FR irradiation [keeping a low Pfr/R-absorbing form (Pr) ratio].  相似文献   

2.
J. W. Cone  R. E. Kendrick 《Planta》1985,163(1):43-54
The fluence-response curves of wildtype and long-hypocotyl mutants of Arabidopsis thaliana L. for induction and inhibition of seed germination, expressed as percentage germination on probit scale against logarithm of fluence, are very different in shape. The mutants show reduced photoinhibition of hypocotyl growth in white light compared with wildtype, suggesting they are either mutated in phytochrome, the blue/UV-absorbing photosystem or some other red-absorbing photosystem. Calculations of the amount of the far-red-absorbing form of phytochrome (Pfr), by a given fluence have been made taking into account pre-existing Pfr in the seeds. This pre-existing Pfr can change dramatically the slope of a fluence-response curve. Other factors such as an overriding factor, stimulating germination by a non-phytochrome-related process, the total phytochrome content, the range of normal distribution of logarithm of Pfr requirement of individuals in the population and differential screening can influence the form and-or position of a fluence-response curve. Action spectra calculated for germination induction and for the inhibition of induction for the different genotypes are qualitatively the same, having peaks of effectiveness at 660 nm and 730 nm respectively. In the blue region of the spectrum very little activity is seen in comparison with that of red light. Differences in bandwidth of effectiveness for induction of germination are attributed to different amounts of screening pigments in the seed batches. The long-hypocotyl mutants therefore have a normal phytochrome system operative in the control of seed germination, by short-term irradiation and no other photosystem appears to be involved.Abbreviations and symbols FR far-red light - P phytochrome - Pfr far-red-absorbing form of P - Pr red-absorbing form of P - R red light - SD standard deviation of logarithm Pfr around - logarithm Pfr required for 50% germination - aparent molar conversion cross section - maximum Pfr/Ptot established by a given wave-length - 0 initial Pfr  相似文献   

3.
The function of phytochrome A   总被引:4,自引:1,他引:3  
Knowledge of the photoperceptive function of phytochrome A has improved substantially thanks to the availability of mutants lacking phytochrome A and transgenic plants transformed with the PHYA gene in sense or anti-sense orientation. In imbibed seeds, phytochrome A mediates very-low-fluence responses. In etiolated seedlings, phytochrome A mediates very-low-fluence responses, high-irradiance responses under continuous far-red light, responsivity amplification to phytochrome B and red-light enhancement of the phototropic response to blue light. In light-grown seedings, phytochrome A modulates the extent of response to reductions in red/far-red ratio perceived by phytochrome B, perceives daylength extensions and night interruptions affecting flowering, and perceives light treatments resetting endogenous rhythms. Under natural radiation these abilities are manifested during seed germination and seedling de-etiolation under dense canopies or extremely low light fluences, and during early neighbour detection, but other processes await experimental evaluation. Phytochrome A affects growth and development throughout the whole life cycle of angiosperms.  相似文献   

4.
Roles of different phytochromes in Arabidopsis photomorphogenesis   总被引:20,自引:2,他引:18  
The red/far-red light-absorbing phytochromes play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. Higher plants possess multiple, discrete phytochromes, the apoproteins of which are the products of a family of divergent (PHY) genes. Arabidopsis thaliana has at least five PHY genes, encoding the apoproteins of phytochromes A-E. Through the analysis of mutants that are deficient in phytochrome A or B and the corresponding double mutant, it is becoming clear that these phytochromes perform both discrete and overlapping roles throughout plant development. Through analysis of the phyA phyB double mutant, it has been possible to define several responses that are mediated by other members of the phytochrome family. This article reviews some of the recent progress in the study of phytochrome-deficient mutants of the model plant Arabidopsis thaliana.  相似文献   

5.
Theoretical calculation of the germination response induced by repeated treatments, separated by a dark period long enough to enable fixation of the effect of the preceding treatment, is possible when defining the percentage germination induced by the first treatment as the responding proportion (p) of the total treated seed population. Consequently the germination response induced by a second treatment should be relative to the proportion (q) of the seed population not responding to the first treatment (q = 1 - p).
The fitting of these calculations with experimental data for the Very Low Fluence Response (VLFR) for germination of seeds of Kalanchoë blossfeldiana Poelln. cv. Vesuv, induced by repeated light pulses, suggests the independency of the effect of each treatment, i.e. the effect of the second treatment is neither positively nor negatively influenced by the first treatment.
This hypothesis is not valid for calculation of the Low Fluence Response (LFR) for germination of Kalanchoë seeds induced by repeated light pulses, since the first light pulse does not result in a germination response. At least two irradiations are needed for an LFR while the third and following pulses increase the response much more than calculated with the proposed equation. It is suggested that the LFR in Kalanchoë , in contrast to the VLFR, includes the involvement of some pre-existing far-red absorbing form of phytochrome (Pfr) and the involvement of dark reactions are to be considered.
The effect of long irradiation times (up to 2xl05 s) resulting in a (defined in this paper) high fluence response (HFR) for germination of Kalanchoë seeds is also discussed in terms of independently responding seed population fractions.  相似文献   

6.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings. Received: 12 July 1998 / Accepted: 13 August 1998  相似文献   

7.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

8.
The phytochrome (phy) photoreceptor family regulates almost all aspects of plant development in a broad range of light environments including seed germination, onset of the photomorphogenic program in seedling stage, the shade avoidance syndrome in competing plant communities, flowering induction and senescence of adult plants. During evolution two clearly distinct classes of phy-s emerged covering these very different physiological tasks.1 PhyA is rapidly degraded in its activated state. PhyA functions in controlling seed germination at very low light intensities (very low fluence response, VLFR) and seedling establishment under photosynthetic shade conditions (high irradiance response, HIR) where the far-red portion of the transmitted light to understorey habitats is substantially enhanced. Arabidopsis phyB together with phyC, D and E belongs to the relatively stable sensor class in comparison to the light labile phyA. PhyB functions at all stages of development including seed germination and seedling establishment, mediates classical red/far-red reversible low fluence responses (LFR) as well as red light high irradiance responses, and it is considered to be the dominating phytochrome sensor of its class.  相似文献   

9.
Abstract Buchnera hispida, a facultative root parasite of grasses and graminaceous crops, has a light requirement for germination. Studies were carried out on the effects of varying photoperiods with or without preceding dark incubation, on seed germination. Buchnera seeds showed long-day behaviour, since they germinated at all photoperiods including continuous light, and longer photoperiods were more effective in triggering seed germination than shorter photoperiods. Also, effects of red and far-red light indicated that the phytochrome system is operative in the light-induced germination of Buchnera. Although dark incubation in water before illumination was not absolutely necessary for germination, it caused the seeds to respond more rapidly to light. The longer the time of the dark incubation the more responsive the seeds were to photoperiod except when 15 min light was given. The effectiveness of a preceding dark incubation in making Buchnera seeds sensitive to rapid light action was completely inhibited at 4°C. This is in agreement with the hypothesis that a reaction partner of the far-red absorbing form of phytochrome is produced during dark incubation of Buchnera seeds. Such an intermediate has also been reported in some positively photoblastic seeds of non-parasitic flowering plants.  相似文献   

10.
The three-horned stock, Matthiola tricuspidata (L.) R. Br. isa widespread annual plant of the Mediterranean sandy shores.Its seeds are dark germinating and negatively photosensitive,in accordance with our previous findings for a number of othermaritime plants. Full germination was obtained at a wide rangeof temperatures (5-25 °C) in the dark. Inhibition of germinationunder light of various spectral qualities could be generallycorrelated, negatively and positively, respectively, with phytochromephotostationary state (ø) and relative cycling rate ofphytochrome (H). The inhibition of germination by white (fluorescent),blue and far-red light, applied either continuously or intermittently,consistently showed a linear dependence upon the logarithm ofthe flux density of the irradiation. The resulting photoinhibitioncurves had parallel slopes and, compared to those of other maritimeplants, they were shifted to higher flux densities, Continuousblue or far-red irradiations, both establishing a similar øvalue (0·26), resulted in statistically similar regressioncurves, thus favouring the hypothesis that phytochrome is thesingle photoreceptor in the photoinhibition of seed germination.Copyright1994, 1999 Academic Press Matthiola tricuspidata (L.) R. Br., three-horned stock, seed germination, light, photoinhibition, phytochrome  相似文献   

11.
The expression of the Arabidopsis ATHB-2 gene is light-regulated both in seedlings and in adult plants. The gene is expressed at high levels in rapidly elongating etiolated seedlings and is down-regulated by a pulse of red light (R) through the action of a phytochrome other than phytochrome A or B, or by a pulse of far-red light (FR) through the action of phytochrome A. In green plants, the expression of the ATHB-2 gene is rapidly and strongly enhanced by lowering the R:FR ratio perceived by a phytochrome other than A or B. Returning the plant to a high R:FR ratio results in an equally rapid decrease of the ATHB-2 mRNA. Consistently, plants overproducing ATHB-2 show developmental phenotypes characteristic of plants grown in low R:FR: elongated petioles, reduced leaf area, early flowering, and reduced number of rosette leaves. Taken together, the data strongly suggest a direct involvement of ATHB-2 in light-regulated growth phenomena throughout Arabidopsis development.  相似文献   

12.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

13.
During development of Arabidopsis thaliana plants, the spectralquality of light can influence the phytochrome controlled germinationof the progeny. Plants grown under light rich in far red energiesproduce light requiring seed that contain phytochrome in thered absorbing or inactive form. Plants grown under light deficientin far red energies produce dark germinating seed that containphytochrome converted mainly to the far red absorbing or activeform. These responses are determined locally within the developingseed without influence from the vegetative portion of the plant.The developing seed is sensitive to spectral changes throughoutembryogenesis until the seed begins to dehydrate just beforefull maturation. At that point the phytochrome is stabilizedin the form photoinduced before dehydration. In relation tothe induction of phytochrome controlled germination responses,the developing seed appears to act independently of the parentplant. (Received April 16, 1974; )  相似文献   

14.
Germination of Arabidopsis seeds is light dependent and under phytochrome control. Previously, phytochromes A and B and at least one additional, unspecified phytochrome were shown to be involved in this process. Here, we used a set of photoreceptor mutants to test whether phytochrome D and/or phytochrome E can control germination of Arabidopsis. The results show that only phytochromes B and E, but not phytochrome D, participate directly in red/far-red light (FR)-reversible germination. Unlike phytochromes B and D, phytochrome E did not inhibit phytochrome A-mediated germination. Surprisingly, phytochrome E was required for germination of Arabidopsis seeds in continuous FR. However, inhibition of hypocotyl elongation by FR, induction of cotyledon unfolding, and induction of agravitropic growth were not affected by loss of phytochrome E. Therefore, phytochrome E is not required per se for phytochrome A-mediated very low fluence responses and the high irradiance response. Immunoblotting revealed that the need of phytochrome E for germination in FR was not caused by altered phytochrome A levels. These results uncover a novel role of phytochrome E in plant development and demonstrate the considerable functional diversification of the closely related phytochromes B, D, and E.  相似文献   

15.
The developmental pattern of dark-grown Arabidopsis thaliana is dramatically shifted by exposure of the seedlings to light: inhibition of hypocotyl (stem) growth is one of the typical responses. Here, we show that the hypocotyl growth of dark-grown seedlings is reduced by exposure of the seeds to light. The light signal is perceived by phytochromes A and B during the hours immediately prior to seed germination. The effect is obviously selective, as other processes under phytochrome control were not equally affected by the pre-germination light cue. The hypocotyl response persists for two days after termination of the light signal, which is more than the persistence observed when the seedlings themselves receive the light stimulus. Treatment with far-red light, which converts phytochrome to the inactive form, did not reduce the hypocotyl growth response to pre-germination light, indicating that the persistent signal was not active phytochrome itself. We propose that trans-developmental phase signals could help plants to adjust to their environment.  相似文献   

16.
Effect of light on seed germination of eight wetland Carex species   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: In wetland plant communities, species-specific responses to pulses of white light and to red : far-red light ratios can vary widely and influence plant emergence from the seed bank. Carex species are the characteristic plants of sedge meadows of natural prairie wetlands in mid-continental USA but are not returning to restored wetlands. Little is known about how light affects seed germination in these species-information which is necessary to predict seed bank emergence and to develop optimal revegetation practices. The effects of light on germination in eight Carex species from prairie wetlands were investigated. METHODS: Non-dormant seeds of eight Carex species were used to determine the influence of light on germination by examining: (a) the ability of Carex seeds to germinate in the dark; (b) the effect of different lengths of exposures to white light on germination; (c) whether the effect of white light can be replaced by red light; and (d) whether the germination response of Carex seeds to white or red light is photoreversible by far-red light. KEY RESULTS: Seeds of C. brevior and C. stipata germinated >25 % in continuous darkness. Germination responses after exposure to different lengths of white light varied widely across the eight species. Carex brevior required <15 min of white light for > or =50 % germination, while C. hystericina, C. comosa, C. granularis and C. vulpinoidea required > or =8 h. The effect of white light was replaced by red light in all species. The induction of germination after exposure to white or red light was reversed by far-red light in all species, except C. stipata. CONCLUSIONS: The species-specific responses to simulated field light conditions suggest that (a) the light requirements for germination contribute to the formation of persistent seed banks in these species and (b) in revegetation efforts, timing seed sowing to plant community development and avoiding cover crops will improve Carex seed germination.  相似文献   

17.
De-etiolation results in phytochrome destruction, greening, and the loss of the far-red high irradiance responses (HIR). Evidence is presented against the hypothesis that the loss of the far-red HIR is a direct consequence of phytochrome destruction. Loss of the far-red HIR for the inhibition of elongation in hypocotyls of Raphanus sativus involves two different, but linked, actions of phytochrome. An induction reaction requires the far-red absorbing form of phytochrome for about 20 min after which accumulation of its product depends only on time. A second reaction requires continuous light or frequent short irradiations and involves cycling of the phytochrome system. This acts on the product of the induction reaction. It is proposed that in green plants an important mode of operation of phytochrome in the light depends on pigment cycling, and that during de-etiolation this system is established under phytochrome control.Abbreviations HIR high irradiance response - R red - FR farred light - Ptot phytochrome, Pr its red absorbing form, Pfr its far-red absorbing form A.M. Jose was the holder of Ministry of Agriculture, Fisheries and Food award AE 6819  相似文献   

18.
Abstract Seed characteristics are key components of plant fitness that are influenced by temperature in their maternal environment, and temperature will change with global warming. To study the effect of such temperature changes, Arabidopsis thaliana plants were grown to produce seeds along a uniquely designed polyethylene tunnel having a thermal gradient reflecting local global warming predictions. Plants therefore experienced the same variations in temperature and light conditions but different mean temperatures. A range of seed‐related plant fitness estimates were measured. There were dramatic non‐linear temperature effects on the germination behaviour in two contrasting ecotypes. Maternal temperatures lower than 15–16 °C resulted in significantly greater primary dormancy. In addition, the impact of nitrate in the growing media on dormancy was shown only by seeds produced below 15–16 °C. However, there were no consistent effects on seed yield, number, or size. Effects on germination behaviour were shown to be a species characteristic responding to temperature and not time of year. Elevating temperature above this critical value during seed development has the potential to dramatically alter the timing of subsequent seed germination and the proportion entering the soil seed bank. This has potential consequences for the whole plant life cycle and species fitness.  相似文献   

19.
The lz-2 mutation in tomato ( Lycopersicon esculentum ) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri 1 and tri 1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.  相似文献   

20.
The effect of light on succinate dehydrogenase (SDH) activity and mRNA content was studied in Arabidopsis thaliana plants. The transition from darkness to light caused a short transient increase in the SDH activity followed by a decrease to a half of the original activity. The white or red light were found to be down-regulating factors for the mRNA content of the sdh1-2 and sdh2-3 genes and SDH catalytic activity both in A. thaliana wild-type plants and in the mutant deficient in the phytochrome B gene, but not in the mutant deficient in the phytochrome A gene, while the far-red light of 730 nm reversed the red light effect. It is concluded that phytochrome A participates in the regulation of mitochondrial respiration through effect on SDH expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号