首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of six amine substrates by rat, rabbit and guinea-pig lung mitochondrial monoamine oxidase (MAO) was investigated polarographically with a Clark oxygen electrode in the presence of chlorphentermine (CP). This amphiphilic drug decreased the deamination of serotonin, norepinephrine, tyramine and dopamine significantly in all three species. However, the oxidation of tryptamine and benzylamine was unchanged. Amine oxidation by MAO in guinea-pig lung mitochondria was much more sensitive to the CP-mediated inhibition than rat or rabbit. A kinetic study of serotonin oxidation in the absence and presence of CP showed that both Vmax and Km were affected. These combined data indicate that CP is a specific inhibitor of pulmonary, mitochondrial monoamine oxidase form A with mixed-type inhibition.  相似文献   

2.
Oxidative deamination by monoamine oxidases of B type in the preparations of sarcoplasmic reticulum vesicles from rabbit skeletal muscles of beta-phenylethylamine or benzylamine was accompanied by a decrease of both the active transport of Ca2+ into the vesicles and Ca2+, Mg2+-dependent ATP-ase activity. This decrease was prevented by pretreatment of the vesicles with deprenyl, a specific monoamine oxidase type B inhibitor. The aldehydes formed in the course of enzymatic deamination of the substrates of type B, monoamine oxidases, are considered as possible participants in the regulation of Ca2+, Mg2+-dependent ATP-ase activity.  相似文献   

3.
Previous methods for isolating lung mitochondria, particularly from rabbits, have yielded preparations which exhibit low respiratory control ratios (RCRs). We now report a method for the isolation of lung mitochondria from rabbit, rat, and mouse with RCRs, ADP/O ratios, and rates of substrate oxidation comparable to those for liver mitochondria. These mitochondrial preparations fail to oxidize exogenously added NADH and exhibit RCRs, during succinate oxidation, which closely approximate those obtained with NADH-linked substrates. However, an otherwise latent Mg2+-stimulated ATPase activity can still be elicited when Mg2+ is added to the mitochondrial incubation medium. This ATPase activity is insensitive to oligomycin and atractyloside, indicating that the source is from contaminating endoplasmic reticulum. The pH and EDTA concentration for maximum substrate oxidation and RCR were found to be 7.2 and 0.1 mm, respectively. State 4 respiration was affected by pH and EDTA concentration while state 3 respiration appeared to be independent of these two factors over the ranges studied.  相似文献   

4.
1. The specific activity of monoamine oxidase was found to be greater in liver mitochondria from ob/ob mice than from lean mice. The activities of marker enzymes were similar in both tissues. 2. Experiments with various substrates (5-hydroxytryptamine, benzylamine and tyramine) and inhibitors (clorgyline and deprenyl) indicated that, unlike rat liver mitochondria, mouse liver mitochondria contain a predominance of the B-form of monoamine oxidase. 3. The Km values for lean and ob/ob mice were the same for any given substrate and were in the increasing order 5-hydroxytryptamine less than tyramine less than benzylamine. Vmax. was approximately 50% greater in obese than in lean mice. 4. Extraction of liver mitochondria with acetone/water or acetone/water/NH3 to remove lipids decreased the enzyme activity relatively more in obese- than in lean-mice preparations, but residual activity was the same in both preparations.  相似文献   

5.
Cultured C6 rat glial cells preferentially deaminated 5-hydroxytryptamine, tryptamine, dopamine and tyramine in comparison to phenylethylamine and benzylamine. Deamination of all substrates was uniformly sensitive to inhibition by clorgyline and relatively insensitive to deprenyl. These data together with the observations of simple sigmoid curves for the inhibition of tyramine deamination by both inhibitors suggest that C6 glial cells contain mainly monoamine oxidase type A, which previously had been suggested to be primarily an intraneuronal MAO type. As these findings are in agreement with other studies of brain MA0 activity in mitochondria separated from neuronal vs glial cell preparations, they help explain why MA0 activity measured with some substrates may be little affected by lesions or by drugs producing nerve ending degeneration.  相似文献   

6.
Summary A coupled peroxidatic oxidation technique is presented which employs benzylamine and tyramine as substrates and clorgyline, deprenyl, phenelzine and pargyline as specific inhibitors. Using this technique with frozen sections of human term placenta and rat liver, the histochemical localization of monoamine oxidase A and B and benzylamine oxidase has been demonstrated.  相似文献   

7.
The metabolism of benzylamine was investigated using the 600g supernatant, mitochondrial, microsomal and cytosol fractions of different rat organs and the livers of various animal species. This substrate was extensively deaminated to benzaldehyde, benzyl alcohol and benzoic acid. The ratio of the metabolic products formed varied greatly depending on the nature of the homogenate used in the incubation mixture of benzylamine. The specific activity of the deamination reaction was mainly concentrated in the mitochondrial and microsomal fractions. In many organs, the microsomal preparations were more active than the mitochondria. The liver was the rat organ with the highest deaminating activity. Hepatic homogenates from rabbit were the most active amongst similar fractions from other animal species. The N-oxygenated products, N-hydroxybenzylamine and benzaldoxime, could not be isolated from the incubation mixtures of benzylamine.  相似文献   

8.
1. Calcium concentrations in the nanomolar range cause a specific stimulation of the oxidation of pyruvate by isolated mitochondria from rat thymus that is sufficient to account precisely for the stimulation of pyruvate oxidation observed when rat thymocytes are incubated with the mitogens concanavalin A or ionophore A23187. 2. Higher concentrations of Ca2+ (more than 50 nM) inhibit the oxidation of NAD+-linked substrates by rat thymus mitochondria without affecting the oxidation of succinate or ascorbate+ NNN'N'-tetramethyl-p-phenylendiamine. 3. The addition of Ni2+ or Co2+ (2mM) to rat thymocytes prevents the response to concanavalin A at the level of pyruvate oxidation without affecting the stimulation of glycolysis induced by this mitogen. In contrast, the complete metabolic response to the ionophore A23187 is abolished by these ions. Ni2+ and Co2+ interfere with the ability of the ionophore to transport Ca2+ across the plasma membrane. 4. Concanavalin A, but not ionophore A23187, increases the respiratory inhibition induced by Ni2+ and Co2+. 5. These results support the view that mitogens stimulate lymphocyte pyruvate oxidation through an increase in cellular Ca2+ uptake.  相似文献   

9.
A variety of experimental conditions were applied with the aim to estimate the correlation between the contribution of ATP synthase to the respiratory flux control and the calcium-induced activation of succinate oxidation in heart mitochondria isolated from rat, rabbit and guinea pig. The sensitivity of respiration in heart mitochondria to the decrease in temperature from 37 degrees C to 28 degrees C decreases in the order rabbit > guinea pig > rat. Ca2+ effect on succinate oxidation rate in state 3 respiration was species- and temperature-dependent and ranged from 0 (rat, 37 degrees C) to +44% (rabbit, 28 degrees C). For mitochondria from all experimental animals, the increase of Ca2+ in physiological range of concentration did not change state 2 respiration rate, and the stimulatory effect of Ca2+ on state 3 respiration was more pronounced at 28 degrees C than at 37 degrees C. The respiratory subsystem was sensitive to Ca2+ ions only in rabbit heart mitochondria. A high positive correlation between Ca2+ ability to stimulate succinate oxidation in state 3 and the control exerted by ATP synthase over the respiratory flux provides argument confirming stimulation of ATP synthase by Ca2+ ions.  相似文献   

10.
W J Nicklas  I Vyas  R E Heikkila 《Life sciences》1985,36(26):2503-2508
1-methyl-4-phenylpyridine (MPP+), a major metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) inhibited the ADP-stimulated and uncoupled oxidation of NADH-linked substrates by brain mitochondrial preparations. MPTP itself was ineffective. The apparent Ki's for MPP+ inhibition of pyruvate or glutamate oxidation by purified rat brain mitochondria were approximately 300 and 400 microM, respectively; with mouse brain mitochondria the values were lower, 60 and 150 microM, respectively. Succinate oxidation was unaffected by either compound. Compromise of mitochondrial oxidative capacity by MPP+ could be an important factor in mechanisms underlying the toxicity of MPTP.  相似文献   

11.
The oxidation of proline to glutamate in mitochondria requires two enzymes, proline oxidase and pyrroline 5-carboxylate (P5C) dehydrogenase. In this paper we report an 800-fold purification P5C dehydrogenase from rat liver mitochondria to yield an essentially homogenous protein. The protein, whose Mr is 59,000, is an alpha 2 dimer (Mr = 115,000) in solution with an isoionic point at pH 5.7. The substrates P5C and NAD+ have apparent dissociation constants of 0.16 and 1.0 mM, respectively. Studies have been conducted to see if the conversion of glutamate and NADH to P5C and NAD+ is catalyzed by this enzyme. These studies have established that if the reverse reaction occurs the rate is 1/15,000th of the rate at which P5C is oxidized to glutamate. The concentration of the substrates needed in the assay results in a high background that interferes with accurate spectrophotometric analysis of the rate of NADH production; therefore a radiochemical (2) or a new colorimetric (3) assay was used here. A number of aldehydes were tested as substrates. It was found that the rat and human enzymes (4) have similar requirements for an aldehyde to be a substrate. Both of these proteins interacted with a polyclonal rabbit anti-rat P5C dehydrogenase serum.  相似文献   

12.
Previous investigations have demonstrated that cells isolated from the outer zone (zona fasciculata + zona glomerulosa) of the guinea-pig adrenal cortex produce far more cortisol than those from the inner zone (zona reticularis). Studies were carried out to compare mitochondrial steroid metabolism in the two zones. Protein and cytochrome P-450 concentrations were similar in outer and inner zone mitochondria. However, the rate of 11 beta-hydroxylation was significantly greater in the outer zone despite the fact that substrates for 11 beta-hydroxylation (11-deoxycortisol, 11-deoxycorticosterone) produced larger type I spectral changes in inner zone mitochondria. The apparent affinities of 11-deoxycortisol and 11-deoxycorticosterone for mitochondrial cytochrome(s) P-450 were similar in the two zones. In both inner and outer zone mitochondria, 11 beta-hydroxylation was inhibited by metyrapone but unaffected by aminoglutethimide. Cholesterol sidechain cleavage activity, measured as the rate of conversion of endogenous cholesterol to pregnenolone, was far greater in outer than inner zone mitochondria. Addition of exogenous cholesterol or 25-hydroxycholesterol to the mitochondrial preparations did not affect pregnenolone production in either zone. Addition of pregnenolone to outer zone mitochondria produced a reverse type I spectral change (delta A 420-390 nm), suggesting displacement of endogenous cholesterol from cytochrome P-450. In inner zone mitochondria, pregnenolone induced a difference spectrum (delta A 425-410 nm) similar to the reduced vs oxidized cytochrome b5 spectrum. A b5-like cytochrome was found to be present in the mitochondrial preparations. Prior reduction of the cytochrome with NADH eliminated the pregnenolone-induced spectral change in inner zone mitochondria but had no effect in outer zone preparations. The results suggest that differences in mitochondrial steroid metabolism between the inner and outer adrenocortical zones account in part for the differences in cortisol production by cells in each zone.  相似文献   

13.
The effects of L-DOPA administration in various doses (250,500 and 1000 mg/kg for 7 days) upon type A and B MAO activities in rat tissues have been investigated using the substrates 5-HT, tyramine and benzylamine. The specific activities of MAO in heart, kidney and brain were significantly increased after L-DOPA, whereas liver and vas deferens MAO was unchanged. None of the observed changes was totally specific for either form of the enzyme, although some evidence for a slight selectivity on type A MAO of heart and type B MAO of kidney and brain was obtained. These results indicate that some tissues may respond to elevated intracellular catecholamine levels, resulting from L-DOPA administration, by increasing their capacity to deaminate those amines. However, at present, the exact mechanism by which these changes are brought about is unknown.  相似文献   

14.
It was found that the 1.4-naphthoquinone derivative AK-135 (2-methyl-3-piperidine-methyl-1.4-naphthoquinone hydrochloride) possesses a marked acceptor capacity during succinate and glutamate oxidation by rat liver and rabbit heart mitochondria. AK-135 fully restores the rate of glutamate (but not succinate) oxidation by liver and heart mitochondria catalyzed by rotenone, antimycin A and cyanide. In non-phosphorylating preparations of liver and heart mitochondria, AK-135 eliminates the inhibition of respiration on exogenous NADH induced by the same electron transport inhibitors. In liver mitochondria, the stimulation of succinate oxidation is due to a reverse electron transfer, whereas in the heart it proceeds via the rotenone-insensitive pathway. The experimental results suggest that in the liver and heart AK-135 accepts electrons from NADH-dehydrogenase oxidizing endogenous NADH. Besides, in the liver this compound is also capable of accepting electrons from NADH-cytochrome b5 reductase.  相似文献   

15.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

16.
Supermitochondrial liquid (SL) of rat and guinea-pig liver increases the activity of 2, 3, 5 triphenyltetrasolium chloride (TPC) and tetrasolium violet (TV) reduction at succinate, NADH and NADPH oxidation by mitochondria (MC). SL contains an activating factor A, being evidently of a protein nature and factor B, increasing the activating activity of factor A. NAD, NADP, NADH and NADP at 5 x 10(-5)-1 x 10(-4) M concentration activate the TPC and TV reduction at succinate oxidation by mitochondria. TPC and TV reduction at succinate and NADP oxidation by mitochondria makes antimicin and cyanide sensitive. SL does not influence succinate dehydrogenase activity, when used as electron acceptors of ferricyanide, blue Vurster, cytochrome C, blue and violet nitrotetrasolium. Activation of electron transfer chair between cytochrome C and oxygen is supposed to be responsible for such an effect.  相似文献   

17.
1. Somatostatin-like immunoreactivity (SLI) and specific binding of 125I-Tyr11-somatostatin were measured in jejunal mucosa of the mouse, rat, hamster, rabbit and guinea-pig. 2. The SLI concentrations in guinea-pig and rabbit were much greater than those in other rodents considered. 3. Somatostatin binding varied greatly with the species examined, the highest values being observed in cytosolic fraction of guinea-pig and rabbit jejunal mucosa, but the lowest ones in mouse. 4. The observed differences in somatostatin binding were not related to varying extents of degradation by the diverse cytosolic preparations studied. 5. The binding sites were highly specific for somatostatin in all rodent species studied. 6. There appears to be a direct relationship between somatostatin levels and somatostatin binding sites in jejunal mucosa when considering a variety of rodent species usually employed as laboratory animals.  相似文献   

18.
The conjugated derivatives--1.4-dinitrobutene-2, 1,4-dinitro-2-methylbutene-2, 1,4-dinitro-2,3-diphenylbutene-2 sodium salts, as well as dinitromethane sodium salt and beta-nitrostyrol, the inhibitors of oxidative deamination of serotonin, tyramine, tryptamine and benzylamine in bovine liver mitochondria, were studied. All the derivatives under study were found to be active inhibitors of monoamine oxidase catalyzing the oxidative deamination of serotonin, tyramine and tryptamine. In a far lesser degree these preparations inhibited the deamination of benzylamine, a specific substrate for monoamine oxidase B. All the dinitrocompound dianions, with the exception of 1,4-dinitro-2,3-diphenylbutene-2 disodium salt, a non-competitive inhibitor of oxidative deamination of the four substrates under study, cause competitive reversible inhibition of monoamine oxidase.  相似文献   

19.
Substrate Selectivity of Type A and Type B Monoamine Oxidase in Rat Brain   总被引:5,自引:5,他引:0  
Abstract: Use of the irreversible inhibitors clorgyline and deprenyl showed that rat brain mitochondria contain type A and type B monoamine oxidase (MAO). Tyramine is a substrate for both types of MAO, whereas serotonin is a preferential substrate for type A MAO. In contrast to MAO in other tissues, type A MAO in brain tissue oxidizes β-phenylethylamine (PEA) at high concentrations (0.5 and 1.0 mM). The proportions of type A and type B MAO activities in the mitochondria estimated from the double-sigmoidal inhibition curves of tyramine oxidation were about 70:30 irrespective of the concentration of tyramine. With PEA as substrate, the ratios of type A to type B activities were found to increase from low values at low concentrations to about 1 at 0.5-1.0 mM-PEA, and even higher at further increased concentrations of PEA. At very low (0.01 mM) and high (10.0 mM) concentrations of PEA, single-sigmoidal curves were obtained; with the high PEA concentration the activity was highly sensitive to clorgyline, whereas with the low concentration it was highly sensitive to deprenyl. In deprenyl-pretreated mitochondrial preparations, all the remaining activity towards 0.5-1.0 mM-PEA was shown to be highly sensitive to clorgyline, demonstrating that this activity was indeed due to oxidation by type A MAO. The opposite result was obtained with deprenyl as inhibitor of clorgyline-pretreated preparations, demonstrating that PEA at this concentration was also oxidized by type B MAO in rat brain mitochondria. The K3 values of type A and type B MAO for PEA were significantly different. On Lineweaver-Burk analysis, plots with PEA as substrate for type A MAO in a deprenyl-treated preparation were linear over a wide concentration range, whereas those for type B MAO in a clorgyline-treated preparation were not linear, but showed substrate inhibition at higher concentrations of the substrate. It is concluded from the present findings that the effect of the substrate concentration must be considered in studies on the characteristics of multiple forms of MAO in various organs and species.  相似文献   

20.
The ontogenic development of glycine N-acyltransferase activity was studied in preparations of hepatic and renal mitochondria from the New Zealand White rabbit and the Sprague-Dawley rat. Preparations of hepatic mitochondria from the rat and the rabbit attain adult glycine N-acyltransferase specific activities by birth and 4 weeks of age respectively, whereas mitochondrial preparations from rabbit kidney do not attain adult activity until 4 months of age. Pretreatment of adult rats or immature rabbits with salicylic acid, benzoic acid or phenobarbital had little effect on glycine N-acyltransferase activity in vitro in liver or kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号