首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract In Escherichia coli with group II capsules, the synthesis of capsular polysaccharide and its cellular expression are encoded by the kps gene cluster, which is composed of three regions. The central region 2 encodes proteins involved in polysaccharide synthesis, and the flanking regions 1 and 3 direct the translocation of the finished polysaccharide across the cytoplasmic membrane and its surface expression. The kps genes of E. coli with the group II capsular K5 polysaccharide, have been cloned and sequenced. Region 1 contains the kps E, D, U, C and S genes. In this communication we describe the overexpression of the kps D and kps U genes as well as the isolation of the KpsU protein from the recombinant bacteria by chloroform treatment. The purified KpsU protein exhibited CMP-Kdo-synthetase activity. The N-terminal sequence and two internal peptide sequences of the isolated protein are in agreement with that previously predicted from the DNA sequence of the kps U gene. The kinetic data of the CMP-Kdo-synthetase participating in K5 capsule expression (K-CMP-Kdo-synthetase) differ from those described for the CMP-Kdo-synthetase, participating in lipopolysaccharide synthesis (L-CMP-Kdo-synthetase).  相似文献   

2.
The cell surface expression of group 2 capsular polysaccharides involves the translocation of the polysaccharide from its site of synthesis on the inner face of the cytoplasmic membrane onto the cell surface. The transport process is independent of the repeat structure of the polysaccharide, and translocation across the periplasm requires the cytoplasmic membrane-anchored protein KpsE and the periplasmic protein KpsD. In this paper we establish the topology of the KpsE protein and demonstrate that the C terminus interacts with the periplasmic face of the cytoplasmic membrane. By chemical cross-linking we show that KpsE is likely to exist as a dimer and that dimerization is independent of the other Kps proteins or the synthesis of capsular polysaccharide. No interaction between KpsD and KpsE could be demonstrated by chemical cross-linking, although in the presence of both KpsE and Lpp, KpsD could be cross-linked to a 7-kDa protein of unknown identity. In addition, we demonstrate that KpsD is present not only within the periplasm but is also in both the cytoplasmic and outer membrane fractions and that the correct membrane association of KpsD was dependent on KpsE, Lpp, and the secreted polysaccharide molecule. Both KpsD and KpsE showed increased proteinase K sensitivity in the different mutant backgrounds, reflecting conformational changes in the KpsD and KpsE proteins as a result of the disruption of the transport process. Collectively the data suggest that the trans-periplasmic export involves KpsD acting as the link between the cytoplasmic membrane transporter and the outer membrane with KpsE acting to facilitate this transport process.  相似文献   

3.
The kps locus for polysialic acid capsule expression in Escherichia coli K1 is composed of a central group of biosynthetic neu genes, designated region 2, flanked on either side by region 1 or region 3 kps genes with poorly defined functions. Chromosomal mutagenesis with MudJ and subsequent complementation analysis, maxicell and in vitro protein expression studies, and nucleotide sequencing identified the region 1 gene, kpsE, which encodes a 39-kDa polypeptide. Polarity of the kpsE::lacZ mutation suggests an operonic structure for region 1. KpsE is homologous to putative polysaccharide-translocation components previously identified in Haemophilus influenzae type b and Neisseria meningitidis group B. An open reading frame upstream of kpsE encodes a 35-kDa polypeptide with homology to GutQ, a putative ATP-binding protein of unknown function encoded by gutQ of the glucitol utilization operon. Whether expression of the gutQ homolog as the potential first gene of region 1 is required for polysialic acid synthesis or localization is presently unknown.  相似文献   

4.
The K1 capsule, an alpha(2,8)-linked polymer of sialic acid, is an important virulence determinant of invasive Escherichia coli. The 17-kb kps gene cluster of E. coli K1 encodes the information necessary for capsule expression at the cell surface. Two proteins, KpsM and KpsT, play a role in the transport of capsular polysaccharide across the cytoplasmic membrane, utilizing the energy from ATP hydrolysis. They belong to the ATP-binding cassette superfamily of transport proteins. In this study, we purified KpsT in its native form and show that the purified protein is able to bind ATP, undergo an ATP-dependent conformational change and hydrolyze ATP. Protease accessibility studies demonstrate the in vivo interaction between KpsM and KpsT.  相似文献   

5.
The 17-kb kps gene cluster encodes proteins necessary for the synthesis, assembly, and translocation of the polysialic acid capsule of Escherichia coli K1. We previously reported that one of these genes, kpsD, encodes a 60-kDa periplasmic protein that is involved in the translocation of the polymer to the cell surface. The nucleotide sequence of the 2.4-kb BamHI-PstI fragment accommodating the kpsD gene was determined. Sequence analysis showed an open reading frame for a 558-amino-acid protein with a typical N-terminal prokaryotic signal sequence corresponding to the first 20 amino acids. KpsD was overexpressed, partially purified, and used to prepare polyclonal antiserum. A chromosomal insertion mutation was generated in the kpsD gene and results in loss of surface expression of the polysialic acid capsule. Immunodiffusion analysis and electron microscopy indicated that polysaccharide accumulates in the periplasmic space of mutant cells. A wild-type copy of kpsD supplied in trans complemented the chromosomal mutation, restoring extracellular expression of the K1 capsule. However, a kpsD deletion derivative (kpsD delta C11), which results in production of a truncated KpsD protein lacking its 11 C-terminal amino acids, was nonfunctional. Western blot (immunoblot) data from cell fractions expressing KpsD delta C11 suggest that the truncated protein was inefficiently exported into the periplasm and localized primarily to the cytoplasmic membrane.  相似文献   

6.
The export of large negatively charged capsular polysaccharides across the outer membrane represents a significant challenge to Gram negative bacteria. In the case of Escherichia coli group 2 capsular polysaccharides, the mechanism of export across the outer membrane was unknown, with no identified candidate outer membrane proteins. In this paper we demonstrate that the KpsD protein, previously believed to be a periplasmic protein, is an outer membrane protein involved in the export of group 2 capsular polysaccharides across the outer membrane. We demonstrate that KpsD and KpsE are located at the poles of the cell and that polysaccharide biosynthesis and export occurs at these polar sites. By in vivo chemical cross-linking and MALDI-TOF-MS analysis we demonstrate the presence of a multi-protein biosynthetic/export complex in which cytoplasmic proteins involved in polysaccharide biosynthesis could be cross-linked to proteins involved in export across the inner and outer membranes. In addition, we show that the RhsA protein, of previously unknown function, could be cross-linked to the complex and that a rhsA mutation reduces K5 biosynthesis suggesting a role for RhsA in coupling biosynthesis and export.  相似文献   

7.
Capsules are well-studied components of the bacterial surface that modulate interactions between the cell and its environment. Generally composed of polysaccharide, they are key virulence determinants in invasive infections in humans and other animals. Genetic determinants involved in capsule expression have been isolated from a number of organisms, but perhaps the best characterized is the kps cluster of Escherichia coli K1. In this review, the current understanding of the functions of the kps gene products is summarized. Further, a proposed mechanistic model for capsule expression is presented and discussed. The model is based on the premise that the numerous components of the kps cluster form a hetero-oligomeric complex responsible for synthesis and concurrent translocation of the capsular polysialic acid through sites of inner and outer membrane fusion. We view the ATP-binding cassette (ABC) transporter, KpsMT, to be central to the functioning of the complex, interacting with the biosynthetic apparatus as well as the extracytoplasmic components of the cluster to co-ordinate synthesis and translocation. The model provides the basis for additional experimentation and reflects emerging similarities among systems responsible for macromolecular export in Gram- negative bacteria.  相似文献   

8.
9.
Monoclonal antibodies to Escherichia coli recA protein were prepared, characterized, and used as affinity reagents for the purification of recA and recA:somatostatin fusion proteins. The monoclonal antibodies recognize an antigenic determinant or determinants located between amino acids 260 and 330 of recA. Addition of a fragment of the recA gene coding for these amino acids to an unrelated gene (beta-galactosidase) allowed the resulting beta-galactosidase fusion protein to be recognized by the recA monoclonal antibodies.  相似文献   

10.
A fusion between lacZ and ftsZ of Escherichia coli was constructed to obtain a beta-galactosidase-FtsZ fusion protein. This fusion protein was used to raise antibodies against cell division protein FtsZ. Six monoclonal antibodies were obtained, and they reacted with FtsZ from cytoplasm and membrane fractions. The epitopes in FtsZ were localized by studying the reactions of the monoclonal antibodies with fusion proteins truncated at the carboxy terminus and with fragments that were obtained by CNBr cleavage of purified FtsZ. Five different epitopes were defined. Epitopes I and III reacted with the same monoclonal antibody, without showing apparent amino acid homology. Epitope II was defined by monoclonal antibodies that cross-reacted with an unknown cytoplasmic 50-kDa protein not related to FtsZ. Epitopes IV and V were recognized by different monoclonal antibodies. All monoclonal antibodies reacted strongly under native conditions, so it is likely that the five epitopes are situated on the surface of native FtsZ. By using these data and computer analysis, a provisional model of FtsZ is proposed. The FtsZ protein is considered to be globular, with a hydrophobic pocket containing GTP-binding elements. Epitopes I and II are situated on each side of the hydrophobic pocket. Because the carboxy terminus contains epitope V, the carboxy terminus of FtsZ is likely oriented toward the protein's surface.  相似文献   

11.
The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Abstract The genes directing the expression of group II capsules in Escherichia coli are organized into three regions. The central region 2 is type specific and thought to determine the synthesis of the respective polysaccharide, whilst the flanking regions 1 and 3 are common to all group II gene clusters and direct the surface expression of the capsular polysaccharide. In this communication we analyze the involvement of region 1 and 3 genes in the synthesis of the capsular KS polysaccharide. Recombinant E. coli strains harboring all KS specific region 2 genes and having various combinations of region 1 and 3 gene were studied using immunoelectron microscopy. Membranes from these bacteria were incubated with UDP[14C]GlcA and UDPG1cNAc in the absence or presence of KS polysaccharide as an exogenous acceptor. It was found that recombinant strains with only gene region 2 did not produce the K5 polysaccharide. Membranes of such strains did not synthesize the polymer and did not elongate K5 polysaccharide added as an exogenous acceptor. An involvement of genes from region 1 (notably kps C and kps S) and from region 3 (notably kps T) in the K5 polysaccharide synthesis was apparent and is discussed.  相似文献   

13.
For construction of bifunctionally active membrane-bound fusion proteins, we designed plasmids encoding fusion proteins in which the carboxyl terminus of Escherichia coli proline carrier was joined to the amino terminus of E. coli beta-galactosidase directly or with a collagen linker inserted between the two. The expressions of these fusion proteins complemented deficiencies in both proline transport and beta-galactosidase activity in E. coli cells. The fusion proteins were stable and mostly localized in the cytoplasmic membrane. The proline transport activities of the fusion proteins were kinetically similar to that of the wild type proline carrier. The beta-galactosidase moiety of the collagen-linked fusion protein was liberated from membrane vesicles by collagenase treatment. The Km value of released beta-galactosidase for o-nitrophenyl beta-D-galactopyranoside hydrolysis was similar to that of membrane-bound beta-galactosidase in the fusion protein. These results indicated that the fusion proteins are bifunctionally active and exhibit normal proline transport and beta-galactosidase activities. The crypticity of the beta-galactosidase activity associated with the fusion proteins indicated that the carboxyl terminus of the proline carrier was located on the cytoplasmic side of the membrane.  相似文献   

14.
A gene encoding mature human insulin-like growth factor II (IGF-II) was constructed from the modified IGF-II cDNA sequence and two double-stranded synthetic oligodeoxynucleotide linkers. It was fused to a truncated lacZ gene such that IGF-II was expressed as part of C-terminus of beta-galactosidase. This fused lacZ'-IGF-II gene was under the control of tac promoter and we overproduced the beta-galactosidase-IGF-II fusion protein in the Escherichia coli. The fusion protein formed inclusion bodies inside the cells. The fusion protein was purified from the isolated inclusion bodies and IGF-II protein was obtained from their fusion protein by CNBr cleavage. The released IGF-II was confirmed by its molecular weight as determined by SDS-PAGE and by its ability to bind anti-IGF antibody.  相似文献   

15.
Many bioactive peptides terminate with an amino acid alpha-amide at their COOH terminus. The enzyme responsible for this essential posttranslational modification is known as peptidyl-glycine alpha-amidating monooxygenase or PAM. We identified cDNAs encoding the enzyme by using antibodies to screen a bovine intermediate pituitary lambda gt11 expression library. Antibodies to a beta-galactosidase/PAM fusion protein removed PAM activity from bovine pituitary homogenates. The 108,207 dalton protein predicted by the complete cDNA is approximately twice the size of purified PAM. An NH2-terminal signal sequence and short propeptide precede the NH2 terminus of purified PAM. The sequences of several PAM cyanogen bromide peptides were localized in the NH2-terminal half of the predicted protein. The cDNA encodes an additional 430 amino acid intragranular domain followed by a putative membrane spanning domain and a hydrophilic cytoplasmic domain. The forms of PAM purified from bovine neurointermediate pituitary may be generated by endoproteolytic cleavage at a subset of the 10 pairs of basic amino acids in the precursor. High levels of PAM mRNA were found in bovine pituitary and cerebral cortex. In corticotropic tumor cells, levels of PAM mRNA and pro-ACTH/endorphin mRNA were regulated in parallel by glucocorticoids and CRF.  相似文献   

16.
We previously constructed a bifunctionally active membrane-bound fusion protein, in which Escherichia coli proline carrier (the product of the putP gene) was linked with beta-galactosidase (the product of the lacZ gene) through a collagen linker (Hanada, K., Yamato, I., and Anraku, Y. (1987) J. Biol. Chem. 262, 14100-14104). The proline carrier was purified from this site specifically cleavable fusion protein. Cytoplasmic membranes overproducing the fusion protein were solubilized with dodecylmaltoside, and the solubilized fraction was subjected to anti-beta-galactosidase IgG-Sepharose chromatography. The fusion protein was specifically adsorbed to the immunoaffinity resin and then treated with collagenase for splitting the proline carrier moiety of the fusion protein from the beta-galactosidase moiety. The collagenase used for the collagenolysis was then removed by anti-collagenase IgG-Sepharose chromatography. In this way, the proline carrier was purified to more than 95% homogeneity of the protein. Proline transport in proteoliposomes reconstituted with the purified carrier was dependent on the membrane potential and the chemical gradient of Na+ across the membrane with apparent Michaelis constants for proline and for Na+ stimulation of 3.6 microM and 31 microM, respectively. These results indicated that the proline carrier mediates electrogenic Na+/proline symport.  相似文献   

17.
The Escherichia coli ProU system is a member of the ATP-binding cassette (ABC) superfamily of transporters. ProU consists of three components (ProV, ProW, and ProX) and functions as a high-affinity, binding protein-dependent transport system for the osmoprotectants glycine betaine and proline betaine. The ProW protein is the integral inner membrane component of the ProU system. Its hydropathy profile predicts seven transmembrane spans and a hydrophilic amino terminus of approximately 100 residues, and it suggests the presence of an amphiphilic alpha-helix (L-61 to F-97) in close proximity to the first strongly hydrophobic segment of ProW. We have studied the membrane topology of the ProW protein by the phoA and lacZ gene fusion approach. A collection of 10 different proW-phoA fusions with alkaline phosphatase activity and 8 different proW-lacZ fusions with beta-galactosidase activity were isolated in vivo after TnphoAB and TnlacZ mutagenesis of a plasmid-encoded proW gene. The recovery of both enzymatically active ProW-PhoA and ProW-LacZ hybrid proteins indicates that segments of ProW are exposed on both sides of the cytoplasmic membrane. To compare the enzymatic activities of each of the indicator proteins joined at a particular site in ProW, we switched the phoA and lacZ reporter genes in vitro in each of the originally in vivo-isolated gene fusions. A mirror-like pattern in the enzyme activity of the resulting new ProW-PhoA and ProW-LacZ hybrid proteins emerged, thus providing positive signals for the location of both periplasmic and cytoplasmic domains in ProW. The protease kallikrein digests the amino-terminal tail of a ProW-LacZ hybrid protein in spheroplasts, suggesting that the amino terminus of ProW is located on the periplasmic side of the cytoplasmic membrane. From these data, a two-dimensional model for ProW was constructed; this model consists of seven transmembrane alpha-helices and an unusual amino-terminal tail of approximately 100 amino acid residues that protrudes into the periplasmic space.  相似文献   

18.
Honeybee prepromelittin is correctly processed and imported by dog pancreas microsomes. Insertion of prepromelittin into microsomal membranes, as assayed by signal sequence removal, does not depend on signal recognition particle (SRP) and docking protein. We addressed the question as to how prepromelittin bypasses the SRP/docking protein system. Hybrid proteins between prepromelittin, or carboxy-terminally truncated derivatives, and the cytoplasmic protein dihydrofolate reductase from mouse were constructed. These hybrid proteins were analysed for membrane insertion and sequestration into microsomes. The results suggest the following: (i) The signal sequence of prepromelittin is capable of interacting with the SRP/docking protein system, but this interaction is not mandatory for membrane insertion; this is related to the small size of prepromelittin. (ii) In prepromelittin a cluster of negatively charged amino acids must be balanced by a cluster of positively charged amino acids in order to allow membrane insertion. (iii) In general, a signal sequence can be sufficient to mediate membrane insertion independently of SRP and docking protein in the case of short precursor proteins; however, the presence and distribution of charged amino acids within the mature part of these precursors can play distinct roles.  相似文献   

19.
It was previously reported that truncation or proteolytic removal of the C-terminal 16 amino acids (the R peptide) from the cytoplasmic tail of the murine leukemia virus (MuLV) envelope protein greatly increases its fusion activity. In this study, to investigate the specificity of the effect of the R peptide on the fusion activity of viral envelope proteins, we expressed simian immunodeficiency virus (SIV)-MuLV chimeric proteins in which the entire cytoplasmic tail of the SIV envelope protein was replaced by either the full-length MuLV cytoplasmic tail or a truncated MuLV cytoplasmic tail with the R peptide deleted. Extensive fusion of CD4-positive cells with the chimeric protein containing a truncated MuLV cytoplasmic tail was observed. In contrast, no cell fusion activity was found for the chimeric protein with a full-length MuLV cytoplasmic tail. We constructed another SIV-MuLV chimeric protein in which the MuLV R peptide was added to an SIV envelope protein cytoplasmic tail 17 amino acids from its membrane-spanning domain. No fusion activity was observed within this construct, while the corresponding truncated SIV envelope protein lacking the R peptide showed extensive fusion activity. No significant difference in the transport or surface expression was observed among the various SIV-MuLV chimeric proteins and the truncated SIV envelope protein. Our results thus demonstrate that the MuLV R peptide has profound inhibitory effects on virus-induced cell fusion, not only with MuLV but also in a distantly related retroviral envelope protein which utilizes a different receptor and fuses different cell types.  相似文献   

20.
The gene encoding N,N'-diacetylchitobiase (chitobiase) of the chitinolytic marine bacterium Vibrio harveyi has been isolated. While expression of the chitobiase gene (chb) was inducible by N,N'-diacetylchitobiose in V. harveyi, it was expressed constitutively when cloned in Escherichia coli, suggesting that controlling elements are not closely linked to chb. Chitobiase was found in the membrane fraction of E. coli cells containing plasmids with the cloned V. harveyi chb gene. When membranes of such cells were separated on Osborn gradients, chitobiase activity was found mainly in the outer membrane band. Translocation of the enzyme to the outer membrane was accompanied by cleavage of a signal peptide. A fusion protein, in which 22 amino acids from the amino terminus of prechitobiase were replaced with 21 amino acids from the pUC19 lacZ amino terminus, was not processed, and 99% of the activity was located in the cytoplasmic fraction. A homology to six amino acids surrounding the lipoprotein processing and modification site was found near the amino terminus of prechitobiase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号