首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.  相似文献   

4.
Recent years have seen considerable evolution in our understanding of the mechanisms of oxygen activation by non-heme iron enzymes, with high-valent iron-oxo intermediates coming to the forefront as formidably potent oxidants. In the absence of substrate, the generation of vividly colored chromophores deriving from the self-hydroxylation of a nearby aromatic amino acid for a number of these enzymes has afforded an opportunity to discern the conditions under which O2 activation occurs to generate a high-valent iron intermediate, and has provided a basis for a rigorous mechanistic examination of the oxygenation process. Here, we summarize the current evidence for self-hydroxylation processes in both mononuclear non-heme iron enzymes and in mutant forms of ribonucleotide reductase, and place it within the context of our developing understanding of the oxidative transformations accomplished by non-heme iron centers.  相似文献   

5.

Background

High intracellular levels of unbound iron can contribute to the production of reactive oxygen species (ROS) via the Fenton reaction, while depletion of iron limits the availability of iron-containing proteins, some of which have important functions in defence against oxidative stress. Vice versa increased ROS levels lead to the damage of proteins with iron sulphur centres. Thus, organisms have to coordinate and balance their responses to oxidative stress and iron availability. Our knowledge of the molecular mechanisms underlying the co-regulation of these responses remains limited. To discriminate between a direct cellular response to iron limitation and indirect responses, which are the consequence of increased levels of ROS, we compared the response of the α-proteobacterium Rhodobacter sphaeroides to iron limitation in the presence or absence of oxygen.

Results

One third of all genes with altered expression under iron limitation showed a response that was independent of oxygen availability. The other iron-regulated genes showed different responses in oxic or anoxic conditions and were grouped into six clusters based on the different expression profiles. For two of these clusters, induction in response to iron limitation under oxic conditions was dependent on the OxyR regulatory protein. An OxyR mutant showed increased ROS production and impaired growth under iron limitation.

Conclusion

Some R. sphaeroides genes respond to iron limitation irrespective of oxygen availability. These genes therefore reflect a “core iron response” that is independent of potential ROS production under oxic, iron-limiting conditions. However, the regulation of most of the iron-responsive genes was biased by oxygen availability. Most strikingly, the OxyR-dependent activation of a subset of genes upon iron limitation under oxic conditions, including many genes with a role in iron metabolism, revealed that elevated ROS levels were an important trigger for this response. OxyR thus provides a regulatory link between the responses to oxidative stress and to iron limitation in R. sphaeroides.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-794) contains supplementary material, which is available to authorized users.  相似文献   

6.
Grinter R  Milner J  Walker D 《PloS one》2012,7(3):e33033
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium Pectobacterium carotovorum carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of Pectobacterium carotovorum and Pectobacterium atrosepticum with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that Pectobacterium spp. carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of Pectobacterium carotovorum and atrosepticum that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells.  相似文献   

7.
Geobacter sulfurreducens, generally considered to be a strict anaerobe, is a predominant microbe in subsurface environments, where it utilizes available metals as electron acceptors. To better understand the metabolic processes involved in the metal-reduction capability of this microbe, the proteins expressed by cells grown anaerobically with either fumarate or ferric citrate as electron acceptor were compared. Proteins were separated by 2-DE under denaturing or nondenaturing conditions, and proteins varying in abundance with a high level of statistical significance (p<0.0001) were identified by peptide mass analysis. Denaturing 2-DE revealed significant differences in the relative abundance of the membrane proteins OmpA and peptidoglycan-associated lipoprotein, several metabolic enzymes, and, in addition, superoxide dismutase and rubredoxin oxidoreductase. Nondenaturing 2-DE revealed elevated catalase in cells grown with ferric citrate. These results suggest that, in addition to adjustments in membrane transport and specific metabolic pathways in response to these two different electron acceptors, distinct differences exist in the oxidative environment within the cell when fumarate or soluble ferric citrate is provided as electron acceptor. Although an anaerobe, G. sulfurreducens appears to have alternate mechanisms for dealing with reactive oxygen species in response to increased intracellular soluble iron.  相似文献   

8.
9.
Dps proteins are the structural relatives of bacterioferritins and ferritins ubiquitously present in the bacterial and archaeal kingdoms. The ball-shaped enzymes play important roles in the detoxification of ROS (reactive oxygen species), in iron scavenging to prevent Fenton reactions and in the mechanical protection of DNA. Detoxification of ROS and iron chaperoning represent the most archetypical functions of dodecameric Dps enzymes. Recent crystallographic studies of these dodecameric complexes have unravelled species-dependent mechanisms of iron uptake into the hollow spheres. Subsequent functions in iron oxidation at ferroxidase centres are highly conserved among bacteria. Final nucleation of iron as iron oxide nanoparticles has been demonstrated to originate at acidic residues located on the inner surface. Some Dps enzymes are also implicated in newly observed catalytic functions related to the formation of molecules playing roles in bacterium-host cell communication. Most recently, Dps complexes are attracting attention in semiconductor science as biomimetic tools for the technical production of the smallest metal-based quantum nanodots used in nanotechnological approaches, such as memory storage or solar cell development.  相似文献   

10.
11.
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.  相似文献   

12.
Antioxidant enzyme responses of plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal pollutions caused by natural processes or anthropological activities such as metal industries, mining, mineral fertilizers, pesticides and others pose serious environmental problems in present days. Evidently there is an urgent need of efficient remediation techniques that can tackle problems of such extent, especially in polluted soil and water resources. Phytoremediation is one such approach that devices effective and affordable ways of engaging suitable plants to cleanse the nature. Excessive accumulation of metal in plant tissues are known to cause oxidative stress. These, in turn differentially affect other plant processes that lead to loss of cellular homeostasis resulting in adverse affects on their growth and development apart from others. Plants have limited mechanisms of stress avoidance and require flexible means of adaptation to changing. A common feature to combat stress factors is synchronized function of antioxidant enzymes that helps alleviating cellular damage by limiting reactive oxygen species (ROS). Although, ROS are inevitable byproducts from essential aerobic metabolisms, these are needed under sub-lethal levels for normal plant growth. Understanding the interplay between oxidative stress in plants and role of antioxidant enzymes can result in developing plants that can overcome oxidative stress with the expression of antioxidant enzymes. These mechanisms have been proving to have immense potential for remediating these metals through the process of phytoremediation. The aim of this review is to assemble our current understandings of role of antioxidant enzymes of plants subjected to heavy metal stress.  相似文献   

13.
14.
红树植物淹水胁迫响应研究进展   总被引:20,自引:1,他引:19  
陈鹭真  林鹏  王文卿 《生态学报》2006,26(2):586-593
潮汐淹水是红树植物面临的主要环境胁迫之一,也是导致目前红树林造林成活率低的一个关键因子。由于长期适应于水淹生境,红树植物发育出一套适应于潮间带生长的抗淹水机制。综述了与红树植物相关的抗淹水胁迫响应机制,包括了形态结构、生长、水分和光合作用、膜脂过氧化系统和根系脱氢酶系统、内源激素和胁迫多胺等5个方面。提出应用人工潮汐系统研究红树植物的淹水抗性机理是确定不同种类红树植物的耐淹水能力的有效手段。并指出生长的研究是淹水胁迫响应研究的基础,而与分子手段相结合的激素水平的研究将在红树植物抗性胁迫研究中得到重视。  相似文献   

15.
16.
The method of two-dimensional protein gel electrophoresis was used to evaluate the changes at the proteins level following oxygen exposure of the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Fifty-seven proteins showed significant differential expression. The cellular concentration of 35 proteins decreased while that of nineteen increased as a specific consequence of oxidative conditions. The proteins that were less abundant belonged to various functional categories such as nucleic acid and protein biosynthesis, detoxification mechanisms, or cell division. Interestingly, quantitative real-time PCR revealed that the genes encoding detoxification enzymes (rubrerythrins, superoxide reductase) are down regulated. The loss of viability of D. vulgaris Hildenborough under these oxidative conditions (Fournier et al., J. Biol. Chem. 279 (2004) 1785) can be directly related to the decrease in the cellular concentrations of these proteins, thereby specifying the toxicity of oxygen for the cells. Among the proteins that were more abundant under oxygen exposure, several thiol-specific peroxidases (thiol-peroxidase, BCP-like protein, and putative glutaredoxin) were identified. Using RT-PCR, the up-regulation of the genes encoding the thiol-peroxidase and the BCP was demonstrated. That is the first time that these proteins have been shown to be involved in the defense of D. vulgaris toward an oxidative stress. Several hypothetical proteins were also shown to be differentially expressed. A function in the defense mechanism against an oxidative stress is proposed for these uncharacterized proteins.  相似文献   

17.
Some enzymes are inactivated by their natural substrates during catalytic turnover, limiting the ultimate extent of reaction. These enzymes can be separated into three broad classes, depending on the mechanism of the inactivation process. The first type is enzymes which use molecular oxygen as a substrate. The second type is inactivated by hydrogen peroxide, which is present either as a substrate or a product, and are stabilized by high catalase activity. The oxidation of both types of enzymes shares common features with oxidation of other enzymes and proteins. The third type of enzyme is inactivated by non-oxidative processes, mainly reversible loss of cofactors or attached groups. Sub classes are defined within each broad classification based on kinetics and stoichiometry. Reaction-inactivation is in part a regulatory mechanism in vivo, because specific proteolytic systems give rapid turnover of such labelled enzymes. The methods for enhancing the stability of these enzymes under reaction conditions depends on the enzyme type. The kinetics of these inactivation reactions can be used to optimize bioreactor design and operation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号