首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
金晓明  艾琳  刘及东  卢欣石 《生态学报》2011,31(18):5406-5413
米氏冰草和羊草都是根茎型禾草,是典型的无性系植物。采取单位面积挖掘取样法,对呼伦贝尔沙地植被次生演替过程中的米氏冰草和羊草种群分株年龄结构进行调查。结果表明,在单生和混合群落中,米氏冰草分株分别由3和4个年龄级组成,羊草均由2个年龄级组成;米氏冰草分株数量和生物量年龄结构变化基本一致,即随着生长年限的延长,呈减少低龄级和增加高龄级比例的趋势,使单生群落中始终为增长型,但接近于稳定型,混生群落中由增长型变为稳定型。羊草分株数量和生物量年龄结构在连续2a均为明显的增长型。羊草各龄级平均单株生产力均高于米氏冰草,平均是米氏冰草的5.2倍。米氏冰草和羊草种群分株年龄结构的变化,蕴含着米氏冰草种群的优势地位将被羊草种群取代的趋势。  相似文献   

2.
松嫩平原两个趋异类型羊草无性系种群特征的比较研究   总被引:10,自引:0,他引:10  
松嫩平原上羊草(Leymus chinensis(Tzvel.)Tzvel.)有两个趋异类型:灰绿型和黄绿型。两个类型羊草的分蘖节一般均存活2~4年,最多可存活5年;根茎一般存活2~3年,最多可存活4年。两个类型无性系种群的分蘖株均为增长型的年龄结构类型。种群根茎的累积长度,灰绿型为18035cm/m~2,黄绿型为21218cm/m~2,其中,均以1、2龄占绝对比重。两个类型均以1龄分蘖株生产力最大,至3龄分蘖株明显减小;各龄根茎的生物量随着年龄的增加呈直线下降;1龄根茎的营养繁殖力甚强,至8月中旬所形成的芽数均已远远多于地上全部分蘖株数;2龄根茎尚存在较小的营养繁殖潜力,3、4龄根茎均已丧失了营养繁殖力。两个类型羊草无性系种群都是通过根茎芽补充更新。  相似文献   

3.
Li HY  Yang YF 《应用生态学报》2011,22(8):1982-1986
对松嫩平原杂类草草甸和榆树疏林草原上大油芒种群的年龄结构及各龄级构件的物质生产力和营养繁殖力进行了研究.结果表明:在2003和2006年中,2个生境的大油芒种群分蘖株均由2~3个龄级组成,根茎由4个龄级组成,分蘖株和根茎均以1a和2a所占比例最大,年龄结构呈增长型或稳定型;分蘖节芽以1a或2a者占优势,根茎顶端芽在芽库中所占比例为29.4%~45.0%,对翌年种群的更新具有重要作用;分蘖株、根茎的物质生产力和营养繁殖力均以1a或2a构件最大,根茎比分蘖节具有更旺盛的营养繁殖力.  相似文献   

4.
徐胜男  王晓晴  张雪丽  夏雨桐  仇萱  张卓  周婵 《生态学报》2021,41(19):7848-7857
基因型多样性作为遗传多样性的重要组成部分,不仅在群落水平,而且在种群水平均可以发挥重要生态作用。以羊草(Leymus chinensis)为研究对象,设置5种基因型多样性梯度试验控制小区,进行基因型多样性对羊草种群年龄结构的影响研究。结果表明:随基因型多样性梯度的逐步增加,2a分蘖株生物量和数量均显著增加(P<0.05);1-4龄级羊草根茎生物量、长度和干物质积累量多数呈极显著性增加的变化趋势(P<0.01)。在1、2、4、8和12种基因型多样性梯度时,分蘖株生物量及数量年龄结构均以1a或2a分蘖株所占比例为最高,年龄结构表现为增长型或稳定型;而羊草种群根茎生物量和长度也以2a根茎所占比例为最高,年龄结构表现为稳定型。随基因型多样性水平的增加,羊草种群分蘖株数量和生物量的年龄结构从增长型向稳定型过渡,但根茎长度和生物量的年龄结构均为稳定型。12基因型多样性水平的4龄级分蘖株和根茎的特征高于其他基因型多样性水平。因此,在不同基因型多样性水平羊草种群分蘖株和根茎具有增长型或稳定型的年龄结构,适当的基因型多样性数量显著促进了各龄级羊草分蘖株和根茎的生物量和数量特征的升高,但高度的基因型多样性水平会增加羊草种群中高龄级的分蘖株和根茎所占的比例,种群发展表现出衰退信号。  相似文献   

5.
松嫩平原赖草无性系生长及其构件的年龄结构   总被引:10,自引:3,他引:7  
杨允菲  张宝田 《应用生态学报》2004,15(11):2109-2112
赖草是长根茎型禾草,是典型的无性系植物.在松嫩平原栽培条件下,移植第1年的赖草无性系,经过一个完整生长季的营养繁殖,最多可形成215个分蘖株,在4个取样的无性系中,最大的无性系是最小的5.4倍;经过2个完整生长季最多可形成2852个分蘖株,最大为最小的2.7倍.在无性系整体水平上,2个年度间无性系扩展面积平均增长了13.2倍,分蘖株平均增长了13.3倍,根茎的累积长度平均增长了15.9倍,根茎节数平均增长了11.2倍,根茎生物量平均增长了14.7倍.无性系分蘖株由2个龄级组成,呈增长型年龄结构,并且随着无性系的生长,其增长型年龄结构更为明显.无性系的芽库均由3个龄级组成,亦呈增长型年龄结构,但随着无性系的生长,其增长型年龄结构趋于减缓.赖草无性系以形成大量的根茎顶端芽和根茎节间芽发育成分蘖株,实现无性系空间生态位的扩展和持续更新.  相似文献   

6.
李海燕  杨允菲 《生态学报》2004,24(10):2171-2177
对松嫩平原羊草草甸水淹恢复演替过程中不同大小羊草无性系斑块的种群构件年龄结构进行了研究。结果表明 ,羊草种群分蘖株在斑块中心由 4个龄级组成 ;最外圈层由 3个龄级组成。根茎在斑块中心和中间圈层均由 2~ 4个龄级组成 ,最外层由1~ 2个龄级组成。潜在种群冬性苗和分蘖节芽总量各圈层均由 4个龄级组成。斑块中心的分蘖株种群为稳定型年龄结构 ,向外发展至增长型年龄结构。根茎长度和潜在种群在各圈层均呈增长型年龄结构。在水淹羊草草甸的恢复过程中 ,不同大小羊草无性系斑块均呈不断扩展的趋势。在生存空间充足时 ,羊草的分蘖节在一个生长季里可以繁殖多个世代。通过羊草根茎的年龄结构可预测演替的进程  相似文献   

7.
扎龙自然保护区不同生境条件下羊草种群构件的年龄结构   总被引:4,自引:0,他引:4  
对黑龙江国家级自然保护区扎龙湿地不同生境条件下羊草种群构件的年龄结构进行了研究。结果表明,在7月末羊草种群的腊熟期,3种生境种群分蘖株均由3个龄级组成,林间风沙土生境为1 080株.m-2,沙土生境为1 290株.m-2,草甸土生境为1 011株.m-2,均以1龄和2龄级分蘖株占绝对优势,3龄级分蘖株所占比例甚小,呈增长型年龄结构。根茎均由4个龄级组成,以沙土生境最多,累积长度为8 000 cm.m-2,草甸土生境最少,为6 948 cm.m-2,均呈增长型年龄结构。各生境根茎物质的储量随着龄级的升高而降低。芽均由4个龄级组成,其数量以草甸土生境最大,为2 279个.m-2,沙土生境次之为2 113个.m-2,林间风沙土生境最少为1 410个.m-2,均呈增长型年龄结构。  相似文献   

8.
松嫩平原野古草种群构件结构动态   总被引:4,自引:3,他引:1  
李程程  李海燕  杨允菲 《生态学报》2015,35(8):2609-2615
野古草是根茎型无性系禾草,在松嫩平原草甸经常形成单优种群落。采用单位面积挖掘取样、分株按营养繁殖世代划分龄级、根茎按实际生活年限划分龄级的方法,对松嫩平原单优群落和混生群落的野古草种群构件结构进行了调查与分析。结果表明,在生长季初期两群落野古草种群均以春性分株和根茎芽占优势,且分株及芽构件结构相对稳定,芽库的输出率单优群落为80.4%,混生群落为62.5%;整个生长季分株由2—3个龄级组成,1a分株数量是2a的2.9—10.2倍,其生物量各月份所占比例平均为93%,随着龄级的增加依次明显减少,呈增长型年龄结构;根茎由3—4个龄级组成,根茎累积长度及生物量均以2a占绝对优势,为稳定型年龄结构;分株生产力1a明显高于2a,对种群贡献最大;根茎贮藏力除个别月份以3a、4a最高外,两群落大部分以2a最高,在生长季后期,1a根茎物质积累的速率最快。  相似文献   

9.
阿尔泰狗哇花为根蘖型菊科多年生无性系草本植物.采用主根芽区的繁殖世代数划分分株和芽龄级的方法,研究了松嫩平原杂类草草甸阿尔泰狗哇花无性系种群不同构件的年龄结构.结果表明:分株构件和芽构件均由4个龄级组成.在孕蕾期,分株构件中1龄级占22.6%、2龄级44.8%、3龄级28.8%、4龄级3.8%,呈稳定型年龄结构.在乳熟期,生殖分株构件以2龄级比重最大,占45.6%,4龄级最小,占0.8%,为稳定型年龄结构;而营养分株构件以1龄级比重最大,占47.5%,4龄级最小,占1.1%,为增长型年龄结构.分株主根的生活年限最多为5年.不同生育期分株构件的生产力均以2龄级最高.在乳熟期,1龄级分株具有较大的生产潜力,4龄级分株的生产力已普遍减弱.芽库中潜在种群呈增长型年龄结构.  相似文献   

10.
根据样地每木栓尺和林缘扩散效应调查以及无性系跟踪挖掘材料,分析了毛乌素沙地中国沙棘无性系各上群年龄结构动态及其遗传后果,结果表明,中国沙棘无性系种群年龄结构由增长型经过稳定型发展到衰退型,在衰退的种群中,中国沙棘能够通过无性系生长实验林窗更新恢复其稳定性或依靠林缘扩散使种群在更大的空间尺度上进行自我维持。同时,随着种群的自疏,无性系种群的组成由较多拥有较少分株的无性系向较少拥有较多分株的无性系转变,从而降低了无性系种群的基株多样性。  相似文献   

11.
Effects of waterlogging were studied in the field and under glasshouse conditions on two clonal lines of Eucalyptus camaldulensis Dehnh (river red gum), which are used in the rehabilitation of damaged agricultural catchments in Western Australia. The plantation of 9-year-old trees was in a position that covered a range of waterlogging and salinity conditions. Up-slope the water table was deeper (0.65–1.5 m), whereas the water table was closer to the ground surface down-slope (0.45 m in winter; 1.25 m in summer). Salinity was greater downslope and increased at the end of the dry summer, remaining high until diluted by the winter rains. Trees of both clonal lines were smaller downslope and used less water over the year. Clone M80 used more water in winter; clone M66 more in summer. In the field, the roots of clone M80 were evenly distributed through the soil profile, while roots of clone M66 decreased with increasing depth. Production of new root terminals varied with season. Greatest production was in spring and early summer, with much lower production over late autumn and winter. Only clone M66 produced new root terminals at depth (60–75 cm) during the drier months of late summer and early autumn. At this time, saline ground-water was the main source for water uptake. To explore clonal differences more closely, the effects of prolonged waterlogging were studied under glasshouse conditions. Clone M80 grew similarly under freely drained and continuously waterlogged conditions for the experimental period (21 weeks). The response under continuously waterlogged conditions was achieved through adventitious root production. By contrast, growth of clone M66 was suppressed under continuous waterlogging, a response associated with the lack of adventitious root production. The results from field and glasshouse studies suggest that clone M80 is more adapted to waterlogging by relatively fresh water than clone M66, but that clone M66 may use water of higher salinity than clone M80. Clone M80 would be better suited to higher positions in partially cleared catchments, where rainfall provides relatively fresh soil water. Clone M66 is better suited to lower catchment positions due to its ability to utilize more saline groundwater. Restoration of the water balance of damaged agricultural catchments can be best managed by matching specialized genotypes with particular catchment positions.  相似文献   

12.
放牧和刈割对内蒙古典型草原大型土壤动物的影响   总被引:1,自引:0,他引:1  
采用连续3年全季节放牧、3种季节性轮牧、秋季刈割和不利用对照6种处理, 研究了内蒙古典型草原大型土壤动物群落特征.调查在春、夏和秋3个季节进行,共捕获大型土壤动物597只,隶属于2门4纲11目,49个类群.结果表明: 全季节放牧导致土壤动物的个体密度、生物量和多样性降低;而刈割的影响相对较轻,土壤动物的个体密度、生物量和多样性甚至有提高趋势.3种季节性轮牧处理中,夏季和秋季放牧2次处理对土壤动物群落个体密度、生物量和多样性等指标的负面影响较轻.刈割管理对退化典型草原大型土壤动物群落的恢复较为有利;夏季和秋季放牧2次处理对大型土壤动物群落的负面影响较轻,是较理想的草地可持续管理措施.  相似文献   

13.
Two experiments conducted in spring and autumn 1992 examined the effect of mollusc grazing on seedling regeneration from natural grassland seedbanks by creating artificial gaps in plots in a grassland sward. Molluscs were excluded from half the gaps by application of molluscicide. Mollusc grazing in both the spring and autumn experiment significantly reduced seedling recruitment, though the intensity of grazing was greatest in autumn. Recruitment of five species was markedly influenced by molluscicide application. In spring, plots from which molluscs were excluded contained significantly more seedlings of Chenopodium polyspermum and Ranunculus acris. In the autumn, exclusion of molluscs resulted in increased populations of R. acris, Stellaria graminea and Rumex acetosa. Cerastium holosteoides populations were greatest in autumn grazed plots. Other species, notably the grasses Holcus lanatus and Agrostis capillaris and the legume Trifolium repens were unaffected by molluscicide application. Species diversity was significantly decreased by molluscicide application in the autumn. Gap size significantly affected the recruitment of two species. Ranunculus acris populations were significantly higher in small gaps in both spring and summer, while Chenopodium recruitment in the spring was greater in small gaps. Gap size also significantly influenced the risk of mollusc attack on Ranunculus as molluscs appeared to show an aggregative feeding response in the high seedling density small gaps. Selective grazing of vulnerable seedlings by molluscs may influence the eventual relative proportions of the species present and so provide a potent mechanism in shaping community composition in grasslands.  相似文献   

14.
Butomus umbellatus L. is a plant species typical of littoral communities of river and stream shores. It can form continuous stands in shallow reservoirs with fluctuating water level. Their expansion is promoted by: (a) intensive vegetative reproduction of plants, (b) crowded sprouting from rhizome fragments on emerged pond bottom, (c) shallow water layer in the year following summer drainage. Expansion of B. umbellatus depends on ploidy level: two cytotypes were found in the Czech and Slovak Republics, differing in their reproductive ability. Seed production of triploids is strongly limited (they are self-incompatible within clones), while diploids can be fully fertile. Nevertheless, even in diploids, the efficiency of seed reproduction under natural conditions is low. Triploids spread by intensive vegetative reproduction, which is decisive for clonal growth of populations and their regeneration after scraping of bottom surface. During seasonal development, maximum of aboveground biomass is produced in early summer, while underground biomass increases till autumn. Growth of the plants is limited by cutting before maximum underground biomass is attained, or by duck grazing.  相似文献   

15.
松嫩平原野大麦无性系分蘖株的年龄结构   总被引:23,自引:9,他引:14  
野大麦无性系分蘖株由3个龄级组成,为明显的增长型年龄结构、1龄级蘖在无性系生殖生长中占绝对优势。分蘖株龄级越高,其数量增长速率越小,对无性系物质积累的贡献越小,1、2龄级分蘖株数量和生物量均随着无性系丛径和总蘖数的增加而增长,3龄级蘖与总蘖数间呈直线相关。平均单蘖生产力随着龄级增加而下降。生殖蘖平均单蘖重具有相对稳定性。无性系中1龄级蘖平均单蘖重体现出一定的密度调节作用,无性系潜在种群也为明显的增  相似文献   

16.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

17.
In Argentina, the intensification of soybean production has displaced a substantial proportion of cattle ranching to fluvial wetlands such as those in the Delta of the Paraná River. Cattle grazing affects structure and dynamics of native forage plants but there is little information on this impact in populations from fluvial wetlands. This study addresses the effect of cattle ranching on density, survival, mean life-span and aerial biomass of Hymenachne pernambucense (Poaceae), an important forage species in the region. The study was carried out monthly for one year in permanents plots subject to continuous grazing and plots excluded from grazing in the Middle Delta of the Paraná River. In plots excluded from grazing, tillers showed significantly higher population density and survival, and a two-fold increase in mean life-span, while continuous grazing decreased survival of cohorts. The largest contribution to tiller density in ungrazed and grazed populations was made by spring and summer cohorts, respectively. Total and green biomass were significantly higher in the ungrazed population, with highest differences in late spring-early summer. Cattle grazing affected the relationship between tiller density and green biomass suggesting that cattle prefer sprouts because they are more palatable and nutritious than older tissue.  相似文献   

18.
松嫩平原栽培条件下羊草无性系构件的结构   总被引:11,自引:0,他引:11  
羊草是长根茎型禾草,是典型的无性系植物,在松嫩平原的生长季末期,栽培条件下羊草无性系分株由分蘖株和分蘖苗组成,在具有充分生长空间而又没有种间竞争的风沙土上,羊草分株的分蘖节在一个生长季内可以繁殖4个世代,按分蘖节的繁殖世代划分龄级,现实与潜在无性系构件的年龄谱均以1龄级比重最大,随着龄级的增加明显减少,呈增长型的年龄结构,羊草无性系分株的生产力主要与分株形成及生长的时间长短有关,形成时间越早、生长时间越长的分蘖株对无性系的物质生产和营养繁殖的贡献越大,羊草无性系在空间扩展与物质贮存上具有一定的可调节性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号