首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of [3H]cholesteryl 14-methylhexadecanoate by a highly purified peptide elongation factor 1 from rabbit reticulocytes is significantly enhanced by GTP and CTP, much less by guanosine 5'-[beta, gamma-methylene]-triphosphate and not at all by ATP or UTP. Removal of endogenous cholesteryl 14-methylhexadecanoate present in the molecule of the factor [Hradec, J. et al. (1971) Biochem. J. 123, 959-966] by digestion with immobilized cholesterol esterase resulted in an almost complete loss of GTPase activity and this could be restored to nearly normal values by the addition of the ester. The same holds true for the GTP-dependent autophosphorylation of the protein-synthesis factor. Cholesteryl 14-methylhexadecanoate was bound only by the beta subunit of the factor. Addition of the alpha subunit, which was inactive on its own, stimulated the binding of the ester to the beta subunit in a sigmoid dependence. The binding of the ester was significantly stimulated by aminoacyl-tRNA but this effect was fully abolished by sodium fluoride, indicating a relation of cholesteryl 14-methylhexadecanoate to the dephosphorylation of the peptide elongation factor. Treatment of the factor with cholesterol esterase decreased its activity in the poly(U)-dependent binding of phenylalanyl-tRNA to ribosome and this activity was again restored by the addition of cholesteryl 14-methylhexadecanoate. The ester thus interacts with the GTP-dependent autophosphorylation of peptide elongation factor 1 and in this way modulates the activity of the factor. A putative scheme is presented explaining the mode of action of cholesteryl 14-methylhexadecanoate.  相似文献   

2.
1. l-Tyrosine-, l-alanine-, l-tryptophan- and l-threonine-tRNA ligases (where tRNA is transfer RNA) were purified from mammalian tissues and the relative contents of cholesteryl 14-methylhexadecanoate were determined in fractions obtained during the isolation. Purified enzymes were extracted with various organic solvents. 2. Cholesteryl 14-methylhexadecanoate contents in purified ligases were up to 210-fold that in the starting material. Different enzymes showed different contents of this cholesteryl ester. 3. Extracted enzymes lost in most cases their ability to catalyse formation of the aminoacylhydroxamate and aminoacyl-tRNA complexes. Enzymes extracted with various solvents showed a variable decreased activity. 4. The original activity could be restored to 70-100% by the addition of cholesteryl 14-methylhexadecanoate. Cholesteryl palmitate, cholesteryl margarate and cholesteryl stearate were inactive in this respect. 5. Incubation mixtures of extracted enzymes with cholesteryl 14-methylhexadecanoate added showed an initial delay in the time-course of both reactions assayed. 6. It is concluded that the effect of cholesteryl 14-methylhexadecanoate on the activity of amino acid-tRNA ligases seems to be specific and that this compound may play some role in the function of these enzymes.  相似文献   

3.
1. Peptide-elongation factors were purified from rat liver and human tonsils and the contents of cholesteryl 14-methylhexadecanoate were determined in fractions obtained during enzyme purification. The relative contents of this compound in purified enzyme preparations was several times higher than that in the crude starting material. Elongation factors from human tonsils contained a significantly larger quantity of the cholesteryl ester than enzyme from rat liver. 2. Transfer enzymes extracted with various organic solvents showed variable decreased activities in both binding and peptidization assay. The decrease of enzymic activity was proportional to the amount of cholesteryl 14-methylhexadecanoate extracted from a given enzymic preparation. In systems containing both extracted elongation factors the polyphenylalanine synthesis was limited by the residual activity of the less active transfer factor. 3. The original enzymic activity of extracted transferases was fully recovered by the addition of pure cholesteryl 14-methylhexadecanoate in quantities corresponding to those extracted. 4. Increase of the relative contents of this cholesteryl ester during enzyme purification, decrease of the enzymic activity after the extraction and its recovery by the addition of this compound indicates that the presence of this ester in elongation factors is essential for the normal function of these enzymes.  相似文献   

4.
A simple reversed-phase HPLC method has been developed for the determination of cholesteryl 14-methylhexadecanoate (CMH) in the blood serum. Lipids are extracted from 0.1 ml of blood serum and after centrifugation, the extract is chromatographed and individual cholesteryl esters, including CMH are separated and eluted with an acetonitrile—2-propanol mixture. The quantification of cholesteryl 14-methylhexadecanoate is precise and highly reproducible and the analysis may be completed within 35 min. The level of CMH in the blood of cancer patients appears to be a useful marker of malignant tumors.  相似文献   

5.
1. Transferase I from rat liver extracted with iso-octane binds significantly less aminoacyl-tRNA than the non-extracted enzyme. The original activity can be fully restored by the addition of cholesteryl 14-methylhexadecanoate. The binding capacity for GTP is not affected by the extraction. 2. In the presence of extracted transferase I the binding of aminoacyl-tRNA to ribosomes is decreased to 11-26% and the simultaneous binding of GTP to 32-43%. Cholesteryl 14-methylhexadecanoate induces a full reactivation of the extracted enzyme in both respects. 3. Extracted complexes A (aminoacyl-tRNA-GTP-transferase I) become bound to ribosomes to the same extent as the corresponding non-extracted preparations. 4. It is concluded that cholesteryl 14-methylhexadecanoate interacts with the binding site of transferase I for aminoacyl-tRNA and secondarily with that for GTP. It does not affect the binding site for ribosomes.  相似文献   

6.
1. Polyribosomes and ribosomal subunits from rat liver were adsorbed on a cellulosic ion-exchange adsorbent, freeze-dried and extracted with organic solvents. The activity of extracted particles in peptide elongation was tested in the presence of purified peptideelongation factors. 2. Chloroform-methanol mixture (2:1, v/v) extracted 1.87+/-0.15 pmol of cholesteryl 14-methylhexadecanoate/pmol of the smaller ribosomal subunit and 0.92+/-0.11 pmol/pmol of the larger subunit. 3. In the presence of transferase I, extracted polyribosomes and 40S subunits bound more phenylalanyl-tRNA than did control non-extracted particles. The same binding as in control mixtures was obtained with extracted particles supplemented with cholesteryl 14-methylhexadecanoate in quantities corresponding to those extracted. 4. The polymerization of phenylalanine was greatly decreased with extracted polyribosomes and subunits and addition of the cholesteryl ester could not fully restore the original activity. 5. Extraction significantly decreased the activity of the P site of peptidyl transferase and normal activity was recovered after the addition of the ester. The A site of peptidyl transferase in extracted polyribosomes showed an increased activity when compared with non-extracted polyribosomes. 6. Cholesteryl 14-methylhexadecanoate apparently affects the function of the ribosomal A site and peptidyl transferase site and probably also that of the guanosine triphosphatase site and P site. The presence of different amounts of the ester in polyribosomes may be one of the mechanisms modulating peptide elongation at the ribosomal level.  相似文献   

7.
1. Peptide-elongation factors were purified from rat liver and treated with cholesterol esterase and phospholipase A2 immobilized on Sepharose 4B. 2. Binding of L-[3H]-phenylalanyl-tRNA to 40S ribosomal subunits was decreased by approx. 70% and to polyribosomes by 30% in the presence of the binding factor incubated with cholesterol esterase. Treatment of this factor with immobilized phospholipase A2 decreased the binding to smaller ribosomal subunits by only about 15%. 3. Poly(U)-dependent phenylalanine polymerization by ribosomal subunits was decreased to approx. 30% of its original value by treatment of both elongation factors with cholesterol esterase. 4. The normal activity of esterase-treated elongation factor in both the binding reaction and peptide-elongation assay was fully recovered by the addition of cholesteryl 14-methyl-hexadecanoate. 5. Different classes of lipids present in peptide-elongation factor 1 have apparently different functions. Whereas phospholipids are required to maintain the strcture of heavy aggregates of this factor, the presence of cholesteryl 14-methylhexadecanoate is obviously necessary for the normal function of peptide-elongation factors.  相似文献   

8.
1. Rats were injected intraperitoneally with cholesteryl 14-methylhexadecanoate and killed after various intervals of time up to 3 days; ribosomes and cell sap were isolated from their liver tissue. These fractions were tested for their ability to participate in protein synthesis. 2. Protein synthesis in complete systems containing ribosomes, cell sap and all necessary cofactors was significantly enhanced at 12 and 72h after the injection and significantly inhibited at 24h. At early times after injection isolated ribosomes had a slightly enhanced ability to bind nRNA. Peptide-elongation processes (i.e. binding of aminoacyl-tRNA to ribosomes, peptidyl transfer and polyphenylalanine synthesis) showed significant stimulation or inhibition depending on the time after injection of the ester. 3. A correlation was found between the ability of cell sap to stimulate polyphenylalanine synthesis and the relative cholesteryl 14-methylhexadecanoate content in the postmicrosomal supernatant at different time-intervals after administration of the ester. No significant changes were found in its content in the whole liver tissue. 4. Since the injected ester has previously been shown to accumulate in some enzymic fractions, the changes in its relative content may represent a regulatory mechanism modulating the rate of protein synthesis.  相似文献   

9.
A model system to study the putative role of cholesteryl ester transfer protein in the egress of interstitial cholesteryl ester is described. Confluent cultures of bovine aortic smooth muscle cells were labeled for 24 h with [3H]cholesteryl linoleyl ether and [14C]cholesteryl linoleate by incubation with bovine milk lipoprotein lipase. This method of labeling results in the transfer of cholesteryl linoleyl ether and cholesteryl ester to three compartments: a trypsin-releasable, trypsin-resistant and catabolic compartment (Stein, O., Halperin, G., Leitersdorf, E., Olivecrona, T. and Stein, Y. (1984) Biochim. Biophys. Acta 795, 47-59). The efflux of labeled cholesteryl linoleyl ether and cholesteryl ester from the extracellular and cell-surface related compartments into a serum-free culture medium containing 1% bovine serum albumin was studied during 24 h of postincubation. The efflux was expressed as a percentage of pulse value, i.e., radioactivity retained by the cell culture at the end of the labeling period. The efflux of [3H]cholesteryl linoleyl ether, [14C]cholesteryl ester and 14C-labeled free cholesterol (formed by cellular hydrolysis of cholesterol ester) into the culture medium with 1% bovine serum albumin was about 5% of the pulse value. Addition of human lipoprotein-deficient serum resulted in a 3-10-fold increase in the efflux of [3H]cholesteryl linoleyl ether and [14C]cholesteryl ester, but did not change markedly the efflux of 14C-labeled free cholesterol. Rat lipoprotein-deficient serum which does not contain cholesteryl ester transfer protein did not increase the efflux of [3H]cholesteryl linoleyl ether or [14C]cholesteryl ester. The rate of cholesteryl ester efflux in the presence of human lipoprotein-deficient serum was linear for about 6 h and increased further up to 24 h. Addition of Intralipid to medium containing human lipoprotein-deficient serum further enhanced the efflux of [3H]cholesteryl linoleyl ether and, to a lesser extent, that of cholesteryl ester. A similar effect was observed also by addition of rat VLDL to medium containing human lipoprotein-deficient serum. Inhibition of cholesteryl linoleyl ether and cholesteryl ester efflux and marked enhancement of free cholesterol efflux occurred when rat HDL was added to medium containing human lipoprotein-deficient serum, while human HDL was only slightly inhibitory. The results obtained with human lipoprotein-deficient serum were reproduced with partially purified cholesteryl ester transfer protein. Using the partially purified cholesteryl ester transfer protein, the efflux of cholesteryl linoleate was compared to that of cholesteryl oleate and was found to be the same.  相似文献   

10.
The absolute configurations of the two acid moieties, 12-methyltetradecanoate and 14-methylhexadecanoate, of glycoglycerolipid S365A isolated from Corynebacterium aquaticum were determined by an HPLC analysis after their conversion with the chiral fluorescent labeling reagents, (1S,2S)- and (1R,2R)-2-(2,3-anthracenedicarboximido)cyclohexanol. Both anteiso acids had the S configuration.  相似文献   

11.
Cholesteryl ester accumulation in macrophages and foam cell formation is believed to play an important role in atherogenesis. The effect of Lp(a) on the incorporation of [14C]oleate into cholesteryl esters was studied in mouse peritoneal macrophages. In view of the physico-chemical similarities between Lp(a) and LDL, the results were compared with those obtained with LDL. Native Lp(a) and LDL did not stimulate cholesteryl ester formation. Incubation of macrophages with Lp(a)- or LDL-dextran sulfate complexes caused a significant increase in cholesteryl ester formation. A similar effect was observed when Lp(a) or LDL were incubated with macrophages in the presence of antibodies directed against the specific Lp(a) apoprotein or against LpB. Treatment of Lp(a) with acetic anhydride or malondialdehyde (MDA) was followed by precipitation of most of the lipoprotein. Therefore, these modifications were not suitable to study the uptake of modified Lp(a) by macrophages. Studies with acetyl-LDL or MDA-treated LDL caused the well-known stimulation of [14C]oleate incorporation into cholesteryl esters. Thus, the modification of Lp(a) by sulfated polysaccharides or by treatment with antibodies yields similar cholesteryl ester deposition in mouse peritoneal macrophages as observed with modified LDL. This might be one mechanism by which Lp(a) exerts its atherogenicity.  相似文献   

12.
A partial rabbit cDNA clone (14b) for ACAT has been characterized and used to demonstrate that hepatic and aortic ACAT mRNA14b abundance increased 2–3-fold in rabbits receiving a high fat/high cholesterol-diet compared to chow fed animals (Pape et al. (1995) J. Lipid Res. 36, 823–838). Because of those data we hypothesized that increased hepatic cholesteryl ester mass and synthesis rates in rabbit liver cells are associated with an increase in ACAT mRNA14b levels. To test this hypothesis we altered cellular cholesteryl ester mass and synthesis rates in primary parenchymal and nonparenchymal cells using various extracellular agents and measured the accumulated mass of ACAT mRNA14b. Parenchymal cells incubated with rabbit β VLDL or mevalonolactone displayed a 6–10-fold increase in cellular cholesteryl ester mass over a three day treatment with no significant changes in cellular free cholesterol, triacylglycerols, or ACAT mRNA14b levels; HMG CoA reductase and LDL receptor mRNA mass decreased initially as a result of cholesteryl ester loading. Treatment of parenchymal cells with CI-976, an ACAT inhibitor, showed a marked reduction in cholesteryl ester synthetic rate compared to β VLDL controls but displayed no change in ACAT mRNA14b levels. A mixed population of rabbit hepatic nonparenchymal cells was incubated with β VLDL for 24 h in culture which resulted in a 6-fold increase in cellular cholesteryl ester mass; there was no change in ACAT mRNA14b levels. In an in vivo study, rabbits consuming a high fat/high cholesterol-diet for three weeks showed a 10-fold increase in hepatic cholesteryl ester with no significant changes in ACAT mRNA14b levels. Together these data indicate that rabbit liver cellular cholesteryl ester mass increases of up to 10-fold are not correlated with ACAT mRNA14b changes. Thus, hepatic ACAT mRNA14b expression and cellular cholesterol esterification do not appear to be coordinately regulated at this level of cholesteryl ester loading.  相似文献   

13.
High density lipoproteins (HDL), doubly labeled with [3H]cholesteryl oleate and cholesteryl [14C]oleate, were reinjected to study HDL cholesteryl ester metabolism in African green monkeys. The transfer of labeled HDL cholesteryl ester to low density lipoprotein (LDL) was rapid and equilibration of the [3H]cholesteryl oleate and cholesteryl [14C]oleate specific activities in LDL and HDL occurred within 90 min after reinjection. The apparent rates of disappearance from the circulation of the two moieties of the cholesteryl ester were different. In the same four animals, the residence time for the turnover of plasma [3H]cholesterol averaged 6.1 days while the residence time for the removal of cholesteryl [14C]oleate from plasma was approximately 2.1 days. These results suggest that for some lipoprotein cholesteryl esters removed from plasma, the cholesterol moiety subsequently reappeared in plasma. The difference between the rate of decay of the 14C-labeled fatty acid moiety, which represents all of the cholesteryl ester removed from plasma (0.48 pools/day) and the decay of the 3H-labeled cholesterol moiety, which represents the sum of cholesteryl ester removal and cholesterol reappearance (0.16 pools/day), is the fraction of the cholesteryl ester pool recycled per day (0.32 pools/day or 22.5 mg/kg per day). In other words, approximately 68% of the cholesterol moiety that was removed from plasma as cholesteryl oleate reappeared in the plasma cholesterol pool. These studies support the concept that an efficient reutilization cycle for plasma cholesterol occurs, i.e., the cholesteryl ester molecule can exit and the cholesterol moiety can re-enter plasma without effective equilibration of the cholesterol moiety with extravascular cholesterol pools.  相似文献   

14.
Acetone powders of a 20,000g pellet fraction from spinach leaves (Spinacia oleracea L.) synthesized [4-(14)C]cholesteryl esters when incubated with [4-(14)C]cholesterol. The reaction was inhibited by digitonin. There was a reciprocal relationship between the decline of label in cholesterol and its incorporation into cholesteryl ester, indicating that free cholesterol was the direct precursor for cholesteryl ester biosynthesis. The hydrolysis of cholesteryl [1-(14)C]palmitate into free cholesterol and [1-(14)C]palmitate was not detected in these acetone powder preparations. Exogenous cholesteryl palmitate had no effect on the esterification of [4-(14)C]cholesterol. The data indicate that an esterase-type mechanism was not involved in the biosynthesis of these steryl esters. Label from [1-(14)C]palmitoyl-CoA was incorporated into steryl esters when incubated with spinach leaf acetone powder preparations. The optimal buffer for steryl ester biosynthesis was 2-(N-morpholino)ethanesulfonate and the optimal pH was 6. Iodoacetamide, N-ethylmaleimide, and dithiothreitol had no effect on the esterification reaction. Ethylenediaminetetraacetate, MgCl(2), CaCl(2), MnCl(2), and ZnSO(4) inhibited at concentrations of 10 to 30 mm.  相似文献   

15.
Acyl-CoA:cholesterol acyltransferase was found predominantly (85%) in RNA-rich microsomes, the rest being in RNA-poor and smooth microsomes. However, the esterified cholesterol concentration of smooth microsomes was 2-fold greater than that of RNA-rich microsomes, suggesting the possibility of an interaction between RNA-rich and smooth microsomes. The distribution of cholesteryl ester between microsome subfractions was examined after incubation of a mixture of RNA-rich and smooth microsomes with [1-14C]palmitoyl-CoA. Based upon specific acyl-CoA:cholesterol acyltransferase activities of the individual fractions, only 31 +/- 3% of the total cholesteryl ester radioactivity should have been found in the smooth component. However, the smooth microsomes contained 54 +/- 3% (p < 0.01) of the radioactive cholesteryl esters. The entrapment of radioactive cholesteryl ester in the smooth microsomes could not be accounted for by passive transfer of cholesteryl ester from RNA-rich microsomes to smooth microsomes. It is proposed that cholesterol in the smooth microsomal membranes may have been esterified by acyl-CoA:cholesterol acyltrasferase located on the surface of RNA-rich microsomes with the resulting cholesteryl ester retained in the smooth microsomes. This hypothesis was strengthened by the observation that acyl-CoA:cholesterol acyl-transferase was located on the cytoplasmic surface of the RNA-rich microsomal vesicle.  相似文献   

16.
J774 macrophages rapidly incorporated [3H]cholesteryl oleate droplets by a non-saturable phagocytic process. In less than 2 h, foam cell morphology was acquired. The extent of loading obtained after 2 h was a linear function of the mass of cholesteryl oleate provided to the cells. The cholesteryl oleate incorporated was hydrolyzed in the cells at a linear rate over 24 h and the fractional hydrolysis was constant over a wide range of cellular esterified cholesterol contents. The rate of hydrolysis was influenced by the physical state of the cholesteryl ester; cholesteryl oleate in isotropic droplets was hydrolyzed 2-3-fold more rapidly than cholesteryl oleate in anisotropic droplets. The hydrolysis of both types of droplets was inhibited by lysosomotropic agents, indicating that hydrolysis occurred in the lysosomes. Only a small fraction (less than 10% after 24 h) of the free [3H]cholesterol generated in the lysosomes was esterified by ACAT resulting in a doubling of the cell free cholesterol content. Electron microscopy of cells treated with digitonin revealed the accumulation of free cholesterol in lipid-laden lysosomes. ACAT was active as endogenous free [14C]cholesterol was esterified in a linear manner over 24 h and was responsive to the presence of lysosomally-derived cholesterol, as the extent of esterification of the endogenous pool was directly proportional to the mass of [3H]cholesterol generated in the lysosomes.  相似文献   

17.
The accessibility of intracellular membrane cholesteryl esters to removal was tested with plasma lipid transfer protein as a tool. Incubation of a mixture of non-radioactive smooth microsomes + rough microsomes prelabeled with cholesteryl ester resulted in slight movement (2-4%) of radioactive cholesteryl ester into smooth microsomes. With the addition of increasing amounts of plasma lipid transfer protein to the mixture, the % transfer of cholesteryl ester into smooth microsomes progressively increased until a plateau was reached at 14%. Movement of cholesteryl ester in the reverse direction was examined with non-radioactive rough microsomes as an acceptor and smooth microsomes prelabeled with cholesteryl ester as a donor. The pattern of the % cholesteryl ester transferred in the reverse and forward direction was almost identical in the presence of plasma lipid transfer protein, showing bidirectional movement of cholesteryl ester between membranes.  相似文献   

18.
Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence, a phospholipase A2 reaction followed by a transacylation reaction. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of [3H]cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with [3H]cholesteryl oleate. When high density lipoprotein labeled with cholesteryl [14C]oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl [14C]oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of [3H]cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. [3H]Cholesterol production from [3H]cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of [14C]oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a [14C]oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule. Formation of this intermediate allows [3H]cholesterol to be liberated from the enzyme by exchange with unlabeled cholesterol of plasma lipoproteins. The liberated [3H]cholesterol thereby becomes available for reesterification by LCAT as indicated by its appearance as newly synthesized cholesteryl linoleate.  相似文献   

19.
Intralipid was sonicated with [3H]cholesteryl linoleyl ether (a nonhydrolyzable analog of cholesteryl linoleate) and incubated with rat HDL and d greater than 1.21 fraction of rabbit serum at a ratio of 0.012 mg triacylglycerol to 1 mg HDL protein. 25% of [3H]cholesteryl linoleyl ether was transferred to HDL. The labeled HDL was injected into donor rats and was screened for 4 h. [125I]HDL was subjected to the same protocol as the 3H-labeled HDL, including screening. The screened, labeled sera were injected into acceptor rats and the disappearance of radioactivity from the circulation was compared. The t1/2 in the circulation of [125I]HDL was about 10.5 h, while that of [3H]cholesteryl linoleyl ether-HDL was about 8 h. The liver and carcass were the major sites of uptake of [3H]cholesteryl linoleyl ether-HDL and accounted for 29-41% (liver) and 30% (carcass) of the injected label. Maximal recovery of [3H]cholesteryl linoleyl ether in the liver was seen 48 h after injection, and thereafter there was a progressive decline of radioactivity, which reached 7.8% after 28 days. The maximal recovery of [125I]HDL in the liver was about 9%. Pretreatment of the acceptor rats with estradiol for 5 days resulted in a 20% increase in the hepatic uptake of [3H]cholesteryl linoleyl ether-HDL and a 5-fold increase in adrenal uptake. The present findings indicate that in the rat the liver is the major site of uptake of HDL cholesteryl ester and that part of the HDL cholesteryl ester may be cleared from the circulation separately from the protein moiety. On the basis of our previous findings (Stein, Y., Kleinman Y, Halperin, G., and Stein, O. (1983) Biochim. Biophys. Acta 750, 300-305) the loss of the [3H]cholesteryl linoleyl ether from the liver after 14-28 days was interpreted to indicate that the labeled [3H]cholesteryl linoleyl ether had been taken up by hepatocytes.  相似文献   

20.
After foliar application of [4-14C]cholesterol to a Solanum khasianum shrub during a 6-week period, cholesterol was recovered not only from untreated leaves, but also from fruits at three different stages of maturity. In addition to free [4-14C]cholesterol, small amounts of [4-14C]cholesteryl esters but no [4-C14]cholesteryl glycosides were found in the fruits, treated, and untreated leaves. Thus, cholesteryl glycosides are probably not involved in the translocation of cholesterol. The implications of cholesterol translocation in the kinetics of solasodine Production are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号