首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Prenylated proteins contain either a 15-carbon farnesyl or a 20-carbon geranylgeranyl isoprenoid covalently attached via a thioether bond to a cysteine residue at or near their C terminus. As prenylated proteins comprise up to 2% of the total protein in eukaryotic cells, and the thioether bond is a stable modification, their degradation raises a metabolic challenge to cells. A lysosomal enzyme termed prenylcysteine lyase has been identified that cleaves prenylcysteines to cysteine and an unidentified isoprenoid product. Here we show that the isoprenoid product of prenylcysteine lyase is the C-1 aldehyde of the isoprenoid moiety (farnesal in the case of C-15). The enzyme requires molecular oxygen as a cosubstrate and utilizes a noncovalently bound flavin cofactor in an NAD(P)H-independent manner. Additionally, a stoichiometric amount of hydrogen peroxide is produced during the reaction. These surprising findings indicate that prenylcysteine lyase utilizes a novel oxidative mechanism to cleave thioether bonds and provide insight into the unique role this enzyme plays in the cellular metabolism of prenylcysteines.  相似文献   

2.
The mam4 mutation of Schizosaccharomyces pombe causes mating deficiency in h- cells but not in h+ cells. h- cells defective in mam4 do not secrete active mating pheromone M-factor. We cloned mam4 by complementation. The mam4 gene encodes a protein of 236 amino acids, with several potential membrane-spanning domains, which is 44% identical with farnesyl cysteine carboxyl methyltransferase encoded by STE14 and required for the modification of a-factor in Saccharomyces cerevisiae. Analysis of membrane fractions revealed that mam4 is responsible for the methyltransferase activity in S. pombe. Cells defective in mam4 produced farnesylated but unmethylated cysteine and small peptides but no intact M-factor. These observations strongly suggest that the mam4 gene product is farnesyl cysteine carboxyl methyltransferase that modifies M-factor. Furthermore, transcomplementation of S. pombe mam4 allowed us to isolate an apparent homolog of mam4 from Xenopus laevis (Xmam4). In addition to its sequence similarity to S. pombe mam4, the product of Xmam4 was shown to have a farnesyl cysteine carboxyl methyltransferase activity in S. pombe cells. The isolation of a vertebrate gene encoding farnesyl cysteine carboxyl methyltransferase opens the way to in-depth studies of the role of methylation in a large body of proteins, including Ras superfamily proteins.  相似文献   

3.
Prenylated proteins contain either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoid covalently attached to cysteine residues at or near their C terminus. These proteins constitute up to 2% of total cellular protein in eukaryotic cells. The degradation of prenylated proteins raises a metabolic challenge to the cell, because the thioether bond of the modified cysteine is quite stable. We recently identified and isolated an enzyme termed prenylcysteine lyase that cleaves the prenylcysteine to free cysteine and an isoprenoid product (Zhang, L., Tschantz, W. R., and Casey, P. J. (1997) J. Biol. Chem. 272, 23354-23359). To facilitate the molecular characterization of this enzyme, its cloning was undertaken. Overlapping cDNA clones encoding the complete coding sequence of this enzyme were obtained from a human cDNA library. The open reading frame of the gene encoding prenylcysteine lyase is 1515 base pairs and has a nearly ubiquitous expression pattern with a message size of 6 kilobase pairs. Recombinant prenylcysteine lyase was produced in a baculovirus-Sf9 expression system. Analysis of both the recombinant and native enzyme revealed that the enzyme is glycosylated and contains a signal peptide that is cleaved during processing. Additionally, the subcellular localization of this enzyme was determined to be lysosomal. These findings strengthen the notion that prenylcysteine lyase plays an important role in the final step in the degradation of prenylated proteins and will allow further physiological and biochemical characterization of this enzyme.  相似文献   

4.
Post-translational modification of Ras proteins includes prenylcysteine-directed carboxyl methylation. Because Ras participates in Erk activation by epidermal growth factor (EGF), we tested whether Ras methylation regulates Erk activation. EGF stimulation of Erk was inhibited by AFC (N-acetyl-S-farnesyl-L-cysteine), an inhibitor of methylation, but not AGC (N-acetyl-S-geranyl-L-cysteine), an inactive analog of AFC. AFC inhibited Ras methylation as well as the activation of pathway enzymes between Ras and Erk but did not inhibit EGF receptor phosphorylation, confirming action at the level of Ras. Transient transfection of human prenylcysteine-directed carboxyl methyltransferase increased EGF-stimulated Erk activation. AFC but not AGC inhibited movement of transiently transfected green fluorescent protein-Ras from the cytosol to the plasma membrane of COS-1 cells and depleted green fluorescent protein-Ras from the plasma membrane in stably transfected Madin-Darby canine kidney cells, suggesting that methylation regulates Erk by ensuring proper membrane localization of Ras. However, when COS-1 cells were transfected with Ras complexed to CD8, plasma membrane localization of Ras was unaffected by AFC, yet EGF-stimulated Erk activation was inhibited by AFC. Thus, Ras methylation appears to regulate Erk activation both through the localization of Ras as well as the propagation of Ras-dependent signals.  相似文献   

5.
Numerous proteins, including Ras, contain a C-terminal CAAX motif that directs a series of three sequential post-translational modifications: isoprenylation of the cysteine residue, endoproteolysis of the three terminal amino acids and alpha-carboxyl methylesterification of the isoprenylated cysteine. This study focuses on the isoprenylcysteine carboxylmethyltransferase (Icmt) enzyme from Saccharomyces cerevisiae, Ste14p, the founding member of a homologous family of endoplasmic reticulum membrane proteins present in all eukaryotes. Ste14p, like all Icmts, has multiple membrane spanning domains, presenting a significant challenge to its purification in an active form. Here, we have detergent-solubilized, purified, and reconstituted enzymatically active His-tagged Ste14p from S. cerevisiae, thus providing conclusive proof that Ste14p is the sole component necessary for the carboxylmethylation of isoprenylated substrates. Among the extensive panel of detergents that was screened, optimal solubilization and retention of Ste14p activity occurred with n-dodecyl-beta-d-maltoside. The activity of Ste14p could be further optimized upon reconstitution into liposomes. Our expression and purification schemes generate milligram quantities of pure and active Ste14p, which is highly stable under many conditions. Using pure reconstituted Ste14p, we demonstrate quantitatively that Ste14p does not have a preference for the farnesyl or geranylgeranyl moieties in the model substrates N-acetyl-S-farnesyl-l-cysteine (AFC) and N-acetyl-S-geranylgeranyl-l-cysteine (AGGC) in vitro. In addition to catalyzing methylation of AFC, we also show that purified Ste14p methylates a known in vivo substrate, Ras2p. Evidence that metals ions are required for activity of Ste14p is also presented. These results pave the way for further characterization of pure Ste14p, as well as determination of its three-dimensional structure.  相似文献   

6.
Prenylated proteins contain either a 15-carbon farnesyl or a 20-carbon geranylgeranyl isoprenoid covalently attached to cysteine residues at or near their C terminus. The cellular abundance of prenylated proteins, as well as the stability of the thioether bond, poses a metabolic challenge to cells. A lysosomal enzyme termed prenylcysteine lyase has been identified that degrades a variety of prenylcysteines. Prenylcysteine lyase is a FAD-dependent thioether oxidase that produces free cysteine, an isoprenoid aldehyde, and hydrogen peroxide as products of the reaction. Here we report initial studies of the kinetic mechanism and stereospecificity of this unusual enzyme. We utilized product and dead end inhibitors of prenylcysteine lyase to probe the kinetic mechanism of the multistep reaction. The results with these inhibitors, together with those of other experiments, suggest that the reaction catalyzed by prenylcysteine lyase proceeds through a sequential mechanism. The reaction catalyzed by the enzyme is stereospecific, in that the pro-S hydride of the farnesylcysteine is transferred to FAD to initiate the reaction. With (2R,1'S)-[1'-(2)H(1)]farnesylcysteine as a substrate, a primary deuterium isotope effect of 2 was observed on the steady state rate. However, the absence of an isotope effect on an observed pre-steady-state burst of hydrogen peroxide formation implicates a partially rate-determining proton transfer after a relatively fast C-H (C-D) bond cleavage step. Furthermore, no pre-steady-state burst of cysteine was observed. The finding that the rate of cysteine formation was within 2-fold of the steady-state k(cat) value indicates that cysteine production is one of the primary rate-limiting steps in the reaction. These results provide substantial new information on the catalytic mechanism of prenylcysteine lyase.  相似文献   

7.
While the Ras C-terminal CAAX sequence signals modification by a 15-carbon farnesyl isoprenoid, the majority of isoprenylated proteins in mammalian cells are modified instead by a 20-carbon geranylgeranyl moiety. To determine the structural and functional basis for modification of proteins by a specific isoprenoid group, we have generated chimeric Ras proteins containing C-terminal CAAX sequences (CVLL and CAIL) from geranylgeranyl-modified proteins and a chimeric Krev-1 protein containing the H-Ras C-terminal CAAX sequence (CVLS). Our results demonstrate that both oncogenic Ras transforming activity and Krev-1 antagonism of Ras transforming activity can be promoted by either farnesyl or geranylgeranyl modification. Similarly, geranylgeranyl-modified normal Ras [Ras(WT)CVLL], when overexpressed, exhibited the same level of transforming activity as the authentic farnesyl-modified normal Ras protein. Therefore, farnesyl and geranylgeranyl moieties are functionally interchangeable for these biological activities. In contrast, expression of moderate levels of geranylgeranyl-modified normal Ras inhibited the growth of untransformed NIH 3T3 cells. This growth inhibition was overcome by coexpression of the mutant protein with oncogenic Ras or Raf, but not with oncogenic Src or normal Ras. The similar growth-inhibiting activities of Ras(WT)CVLL and the previously described Ras(17N) dominant inhibitory mutant suggest that geranylgeranyl-modified normal Ras may exert its growth-inhibiting action by perturbing endogenous Ras function. These results suggest that normal Ras function may specifically require protein modification by a farnesyl, but not a geranylgeranyl, isoprenoid.  相似文献   

8.
Proteins containing C-terminal "CAAX" sequence motifs undergo three sequential post-translational processing steps: modification of the cysteine with either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenyl lipid, proteolysis of the C-terminal -AAX tripeptide, and methylation of the carboxyl group of the now C-terminal prenylcysteine. A putative prenyl protein protease in yeast, designated Rce1p, was recently identified. In this study, a portion of a putative human homologue of RCE1 (hRCE1) was identified in a human expressed sequence tag data base, and the corresponding cDNA was cloned. Expression of hRCE1 was detected in all tissues examined. Both yeast and human RCE1 proteins were produced in Sf9 insect cells by infection with a recombinant baculovirus; membrane preparations derived from the infected Sf9 cells exhibited a high level of prenyl protease activity. Recombinant hRCE1 so produced recognized both farnesylated and geranylgeranylated proteins as substrates, including farnesyl-Ki-Ras, farnesyl-N-Ras, farnesyl-Ha-Ras, and the farnesylated heterotrimeric G protein Ggamma1 subunit, as well as geranylgeranyl-Ki-Ras and geranylgeranyl-Rap1b. The protease activity of hRCE1 activity was specific for prenylated proteins, because unprenylated peptides did not compete for enzyme activity. hRCE1 activity was also exquisitely sensitive to a prenyl peptide analogue that had been previously described as a potent inhibitor of the prenyl protease activity in mammalian tissues. These data indicate that both the yeast and the human RCE1 gene products are bona fide prenyl protein proteases and suggest that they play a major role in the processing of CAAX-type prenylated proteins.  相似文献   

9.
The prenylated protein carboxyl methyltransferase (PPMT) catalyzes the posttranslational methylation of isoprenylated C-terminal cysteine residues found in many signaling proteins such as the small monomeric G proteins and the gamma subunits of heterotrimeric G proteins. Here we report that both membrane-bound PPMT from rat kidney and the recombinant bacterially expressed form of the enzyme required divalent cations for catalytic activity. Unlike EDTA and EGTA, the metal chelator 1,10-phenanthroline strongly inhibited the PPMT activity of kidney intracellular membranes in a dose- and time-dependent manner. 1,10-Phenanthroline was found to inhibit the methylation of the prenylcysteine analog N-acetyl-S-all-trans-geranylgeranyl-l-cysteine, a synthetic substrate for PPMT, with an IC(50) of 2.2 mM. Gel electrophoretic analysis demonstrated that 1,10-phenanthroline almost totally abolished the labeling of methylated proteins in kidney intracellular membranes. Immunoblotting analysis showed that one of the two major peaks of (3)H-methylated proteins in intracellular membranes comigrated with the small G proteins Ras, Cdc42, RhoA, and Rab1. In addition, the methylation of immunoprecipitated Ras and RhoA from kidney intracellular membranes was strongly inhibited when 1,10-phenanthroline was present. Treatment of kidney intracellular membranes with 1,10-phenanthroline increased the proteolytic degradation of PPMT by exogenous trypsin, compared to untreated membranes. We conclude from these data that metal ions are essential for the activity and the stabilization of PPMT. The finding that PPMT is a metalloenzyme may provide new insights into the functions played by this methyltransferase in signal transduction processes.  相似文献   

10.
Extracellular ATP, adenosine (Ado), and adenosine plus homocysteine (Ado/HC) cause apoptosis of cultured pulmonary artery endothelial cells through the enhanced formation of intracellular S-adenosylhomocysteine and disruption of focal adhesion complexes. Because an increased intracellular ratio of S-adenosylhomocysteine/S-adenosylmethionine favors inhibition of methylation, we hypothesized that Ado/HC might act by inhibition of isoprenylcysteine-O-carboxyl methyltransferase (ICMT). We found that N-acetyl-S-geranylgeranyl-L-cysteine (AGGC) and N-acetyl-S-farnesyl-L-cysteine (AFC), which inhibit ICMT by competing with endogenous substrates for methylation, caused apoptosis. Transient overexpression of ICMT inhibited apoptosis caused by Ado/HC, UV light exposure, or tumor necrosis factor-alpha. Because the small GTPase, Ras, is a substrate for ICMT and may modulate apoptosis, we also hypothesized that inhibition of ICMT with Ado/HC or AGGC might cause endothelial apoptosis by altering Ras activation. We found that ICMT inhibition decreased Ras methylation and activity and the activation of the downstream signaling molecules Akt, ERK-1, and ERK-2. Furthermore, overexpression of wild-type or dominant active H-Ras blocked Ado/HC-induced apoptosis. These findings suggest that inhibition of ICMT causes endothelial cell apoptosis by attenuation of Ras GTPase methylation and activation and its downstream antiapoptotic signaling pathway.  相似文献   

11.
Human isoprenylcysteine carboxyl methyltransferase (hIcmt) is a promising anticancer target as it is important for the post-translational modification of oncogenic Ras proteins. We herein report the synthesis and biochemical activity of 41 farnesyl-cysteine based analogs versus hIcmt. We have demonstrated that the amide linkage of a hIcmt substrate can be replaced by a sulfonamide bond to achieve hIcmt inhibition. The most potent sulfonamide-modified farnesyl cysteine analog was 6ag with an IC50 of 8.8 ± 0.5 μM for hIcmt.  相似文献   

12.
Membrane extracts of sterile Saccharomyces cerevisiae strains containing the a-specific ste14 mutation lack a farnesyl cysteine C-terminal carboxyl methyltransferase activity that is present in wild-type a and alpha cells. Other a-specific sterile strains with ste6 and ste16 mutations also have wild-type levels of the farnesyl cysteine carboxyl methyltransferase activity. This enzyme activity, detected by using a synthetic peptide sequence based on the C-terminus of a ras protein, may be responsible not only for the essential methylation of the farnesyl cysteine residue of a mating factor, but also for the methylation of yeast RAS1 and RAS2 proteins and possibly other polypeptides with similar C-terminal structures. We demonstrate that the farnesylation of the cysteine residue in the peptide is required for the methyltransferase activity, suggesting that methyl esterification follows the lipidation reaction in the cell. To show that the loss of methyltransferase activity is a direct result of the ste14 mutation, we transformed ste14 mutant cells with a plasmid complementing the mating defect of this strain and found that active enzyme was produced. Finally, we demonstrated that a similar transformation of cells possessing the wild-type STE14 gene resulted in sixfold overproduction of the enzyme. Although more complicated possibilities cannot be ruled out, these results suggest that STE14 is a candidate for the structural gene for a methyltransferase involved in the formation of isoprenylated cysteine alpha-methyl ester C-terminal structures.  相似文献   

13.
Several proteins associated with signal transduction in eukaryotes are carboxyl methylated at COOH-terminal S-farnesylcysteine residues. These include members of the Ras superfamily and gamma-subunits of heterotrimeric G-proteins. The enzymes that catalyze the carboxyl methylation reaction also methylate small molecules such as N-acetyl-S-trans, trans-farnesyl-L-cysteine (AFC). AFC inhibits carboxyl methylation of p21ras and related proteins both in vitro and in vivo. Saturating concentrations of AFC cause a greater than 80% inhibition of chemotactic responses of mouse peritoneal macrophages. Our results suggest that carboxyl methylation may play a role in the regulation of receptor-mediated signal transduction processes in eukaryotic cells.  相似文献   

14.
Modrfication of proteins at C-terminal cysteine residue(s) by the isoprenoids farnesyl (C15) and geranylgeranyl (C20) is essential for the biological function of a number of eukaryotic proteins including fungal mating factors and the small, GTP-binding proteins of the Ras superfamily. Three distinct enzymes, conserved between yeast and mammals, have been identified that prenylate proteins: farnesyl protein transferase, geranylgeranyl protein transferase type I and geranylgeranyl protein transferase type II. Each prenyl protein transferase has its own protein substrate specificity. Much has been learned about the biology, genetics and biochemistry of protein prenylation and prenyl protein transferases through studies of eukaryotic microorganisms, particularly Saccharo-myces cerevisiae. The functional Importance of protein prenylation was first demonstrated with fungal mating factors. The initial genetic analysis of prenyl protein transferases was in S. cerewisiae with the isolation and subsequent characterization of mutations in the RAM1, RAM2, CDC43 and BET2 genes, each of which encodes a prenyl protein transferase subunit. We review here these and other studies on protein prenylation in eukaryotic microbes and how they relate to and have contributed to our knowledge about protein prenylation in all eukaryotic cells.  相似文献   

15.
16.
The prenylation of proteins.   总被引:16,自引:0,他引:16  
The prenylated proteins represent a newly discovered class of post-translationally modified proteins. The known prenylated proteins include the oncogene product p21ras and other low molecular weight GTP-binding proteins, the nuclear lamins, and the gamma subunit of the heterotrimeric G proteins. The modification involves the covalent attachment of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) isoprenoid moiety in a thioether linkage to carboxyl terminal cysteine. The nature of the attached substituent is dependent on specific sequence information in the carboxyl terminus of the protein. In addition, prenylation entrains other posttranslational modifications forming a reaction pathway. In this article, we review our current understanding of the biochemical reactions involved in prenylation and discuss the possible role of this modification in the control of cellular functions such as protein maturation and cell growth.  相似文献   

17.
Two protein prenyltransferase enzymes, farnesyltransferase (FTase) and geranylgeranyltransferase-I (GGTase-I), catalyze the covalent attachment of a farnesyl or geranylgeranyl lipid group to the cysteine of a CaaX sequence (cysteine [C], two aliphatic amino acids [aa], and any amino acid [X]. In vitro studies reported here confirm previous reports that CaaX proteins with a C-terminal serine are farnesylated by FTase and those with a C-terminal leucine are geranylgeranylated by GGTase-I. In addition, we found that FTase can farnesylate CaaX proteins with a C-terminal leucine and can transfer a geranylgeranyl group to some CaaX proteins. Genetic data indicate that FTase and GGTase-I have the same substrate preferences in vivo as in vitro and also show that each enzyme can prenylate some of the preferred substrates of the other enzyme in vivo. Specifically, the viability of yeast cells lacking FTase is due to prenylation of Ras proteins by GGTase-I. Although this GGTase-I dependent prenylation of Ras is sufficient for growth, it is not sufficient for mutationally activated Ras proteins to exert deleterious effects on growth. The dependence of the activated Ras phenotype on FTase can be bypassed by replacing the C-terminal serine with leucine. This altered form of Ras appears to be prenylated by both GGTase-I and FTase, since it produces an activated phenotype in a strain lacking either FTase or GGTase-I. Yeast cells can grow in the absence of GGTase-I as long as two essential substrates are overexpressed, but their growth is slow. Such strains are dependent on FTase for viability and are able to grow faster when FTase is overproduced, suggesting that FTase can prenylate the essential substrates of GGTase-I when they are overproduced.  相似文献   

18.
Mondal MS  Wang Z  Seeds AM  Rando RR 《Biochemistry》2000,39(2):406-412
The activities of small G-proteins are in part regulated by their interactions with GDI proteins. This binding is thought to be dependent on the C-terminal isoprenoid modification (geranylgeranyl or farnesyl) of these proteins. G-proteins are generally isoprenylated/methylated at their C-terminal cysteine residues. A quantitative fluorescence assay is reported here to evaluate the specificity of binding of rhoGDI. A rhodamine-labeled geranylgeranylated/methylated cysteine derivative is used to measure its binding to rhoGDI. Saturable binding in the low micromolar range is found with various geranylgeranylated/farnesylated analogues. Interestingly, the carboxymethylated derivatives bound significantly better than their free acid counterparts, suggesting that the state of methylation of the analogues is important for binding. The binding is also selective with respect to isoprenoid. Analogues containing hydrophobic modifications other than geranylgeranyl or farnesyl do not bind with significant affinities. These data demonstrate a substantial degree of specificity in the binding of isoprenoids to a protein important in signal transduction.  相似文献   

19.
Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the α-carboxyl methylation of the C-terminal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng-Prusoff method, the K(i) values were determined from the IC(50) values. Analog 1a has a K(IC) of 1.4±0.2μM and a K(IU) of 4.8±0.5μM while 1b has a K(IC) of 0.5±0.07μM and a K(IU) of 1.9±0.2μM. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells.  相似文献   

20.
Posttranslational prenylation of proteins synthesized as soluble precursors enhances their hydrophobicity and enables them to bind biological membranes. These modifications consist in the attachment of a C15 farnesyl or a C20 geranylgeranyl moiety to the cysteine residue(s) of proteins bearing CAAX, CC or CXC C-terminal sequences (where C = cysteine, A = aliphatic residue and X = any amino-acid), such as proteins of the ras superfamily, gamma subunits of heterotrimetric G proteins, lamin B as well as yeast mating factor a. A farnesyl transferase (FTase) and two distinct geranylgeranyl transferases (GGTases I and II) have been recently identified. FTase and GGTase I modify proteins containing a C-terminal CAAX motif; such a sequence is necessary and sufficient for recognition by the enzymes. The nature of the fourth residue determines the nature of the modification: when X is a serine, a methionine or a phenylalanine, the protein is farnesylated, whereas the presence of a leucine residue results in the attachment of a geranylgeranyl group. Both these enzymes are alpha beta heterodimers; their purification, molecular cloning of their coding sequences as well as mutational studies in yeast have shown that they share a common alpha subunit, and that their beta subunits exhibit a significant level of sequence similarity. GGTase II modifies ras-related proteins exhibiting CC and CXC C-terminal sequences; the enzyme as well as its recognition motif are yet largely uncharacterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号