首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modifications of human plasma alpha1-antitrypsin with reagents which modify lysyl residues (citraconic anhydride, acetic anhydride, formaldehyde and 2,4,6-trinitrobenzenesulfonic acid) and arginyl residued (1,2-cyclohexanedione) were examined with regard to their effect upon the elastase inhibitory capacity of the glycoprotein. 2,4,6-Trinitrobenzenesulfonic acid was employed to quantitate the remaining free amino groups (epsilon-NH2 groups of lysine) and the extent of modifications. Amino acid analysis was utilized in the same capacity for the guanidino groups of arginyl residues. The elastase inhibitory capacity of alpha1-antitrypsin was destroyed following trinitrophenylation, citraconylation and acetylation. Circular dichroism of the native and modified derivatives revealed major changes in conformation following trinitrophenylation and citraconylation while CD profiles of acetylated and reductively methylated derivatives differed from that of the native profile considerably less. Reductively methylated alpha1-antitrypsin retained its elastatse inhibitory capacity. The reaction of 1,2-cyclohexanedione with alpha1-antitrypsin did not effect in a loss in inhibitory capacity. Gel filtration studies of native and modified alpha1-antitrypsin on Sephadex G-100 demonstrated an increased molecular weight presumably through molecular aggregation, in the citraconylated and trinitrophenylated derivatives, but not in the cases of the other derivatives. Based upon these studies and previous investigations of our laboratory, it was concluded that (1) alpha1-antitrypsin is a lysyl inhibitor type (i.e., the reactive site is a Lys-X bond), (2) its interaction with elastase follows a pattern similar to trypsin and chymotrypsin, and (3) the positively charged epsilon-NH2 group of lysine is essential for the maintenance of elastase inhibitory capacity.  相似文献   

2.
At pH 8.0 and 25°C α1-proteinase inhibitor and α2-macroglobulin bind human pancreatic elastase with rate constants of 4.7·105 M−1·s−1 and 6.4·106 M−1·s−1, respectively. The corresponding delay times of elastase inhibition in plasma are 0.4 s and 0.2 s, respectively, indicating that both inhibitors may act as physiological antielastases. Elastin impairs the elastase inhibitory capacity of α1-proteinase inhibitor and α2-macroglobulin. In presence of human elastin, the former behaves like a slow-binding elastase inhibitor, with a rate constant of about 260 M−1·s−1. In contrast, α2-macroglobulin is a fast-binding inhibitor of elastin-bound elastase, but only one of its two sites is functioning in presence of elastin.  相似文献   

3.
Four ethyl p-nitrophenyl alkylphosphonates were studied for the inhibition of elastase. A pH-dependence study using the assay substrate BOC-Ala-ONp or the phosphonate inhibitors showed the participation of an ionizing group with an apparent pKa of 6.9 and a decrease of reaction or inhibition at higher pH. Out of the four compounds investigated ethyl p-nitrophenyl pentylphosphonate was found to be the best inhibitor of elastase as judged from the value of k2KI. This value, which is the measure of inhibitory capacity, is the highest reported so far for the inhibition of elastase.  相似文献   

4.
Reactions of human plasma α1-antitrypsin (α1-AT) with reagents known to modify the lysyl residues [citraconic anhydride, acetic anhydride, 2,4,6-trinitrobenzenesulfonic acid (TNBS)] and arginyl residues [1,2-cyclohexanedione (CHD) and phenylglyoxal (PGO)] in proteins have been studied. Native and modified human plasma α1-AT preparations were tested for their inhibitory activities against trypsin and α-chymotrypsin. TNBS was utilized to modify and quantitate free amino groups (?-NH2 groups of lysine residues) in human plasma α1-AT. The number of lysine residues determined by the TNBS spectrophotometric procedure agreed well with that found by amino acid analyses. Both the trypsin-inhibitory and chymotrypsin-inhibitory activities of α1-AT were destroyed by modification with TNBS. CHD was employed to modify the arginyl residues of α1-AT. Neither the trypsin-inhibitory nor the chymotrypsin-inhibitory activity of α1-AT was affected by modification of its arginyl residues. Amino acid analyses of the CHD-treated α1AT revealed that only the arginine residues were modified. PGO was also utilized for the modification of the arginyl residues in α1-AT. Both the trypsininhibitory and chymotrypsin-inhibitory activities of α1-AT were destroyed after modification. However, amino acid analyses showed that not only the arginyl, but also the lysyl residues of the PGO-treated inhibitor were modified. The side reaction of PGO with the lysyl residues could explain the loss of inhibitory activities. Reaction of a α1-AT with citraconic anhydride resulted in an extensive modification of the amino groups accompanied by a 100% loss in inhibitory activity against both trypsin and α-chymotrypsin. Comparable results were observed when acetic anhydride was utilized as the acylating reagent. With the exception of the citraconylated α1AT, all of the other chemically modified α1-AT derivatives studied presently retained their immunological reactivities against antisera to native α1-AT. Regeneration of about 60% of the PGO-blocked arginyl residues in α1-AT did not lead to any recovery of the proteinase inhibitory activities. Full recovery of trypsin-inhibitory and immunological activities were achieved when about 50% of the citraconylated amino groups were deblocked. The CHD-treated α1-AT still retained the capacity to form complexes with both trypsin and chymotrypsin. On the other hand, the other chemically modified α1-AT derivatives have completely lost the ability to form complexes with the enzymes. Recovery of the ability to form complexes with the enzymes was, however, recovered when about 50% of the citraconylyl groups was removed from the α1-AT molecule. Based on these modification studies, it is concluded that α1-AT is a lysyl inhibitor type (i.e., the reactive site is Lys-X bond) and that the interaction of α1-AT with trypsin or chymotrypsin very likely involves or requires the same site as in the case of the soybean trypsin inhibitor (Kunitz).  相似文献   

5.
Incubation of lens crystallins with aspirin inhibits the development of opacities caused by cyanate. Cyanate-induced opacities are thought to be due to carbamylation of the lysyl residues which causes a decrease in the protein charge and subsequent conformational changes that permit disulfide bonding. Because aspirin can also react with lysyl residues, it has been proposed that the aspiring inhibition of cataractogonesis is due to acetylation of the lysyl which would block their reaction with cyanata. However, acetylation oflysyl residues also lowers the protein charge and would be expected to effect changes in protein conformation similar to those caused by carbamylation. Therefore, acetylation of the lysyl residues is not a satisfactory explanation for the inhibitory effect of aspirin on lens opacification. Our investigations of the reactions of cyanate and aspirin with bovine γII-crystallins show that the cysteinyl residues are also carbamylated and acetylated at pH 7.4. At this pH, the carbamylation at the cysteinyl residues is reversible, leading to regeneration of the thiol group and disulfide bonding. In contrast, the acetylation at cysteinyl residues is stable at pH 7.4 and can prevent disulfide bonding. This difference in stability explains how cyanate promotes, and aspirin inhibits, cataractogenesis.  相似文献   

6.
The honeybee is an important insect species in global ecology, agriculture, and alternative medicine. While chymotrypsin and trypsin inhibitors from bees show activity against cathepsin G and plasmin, respectively, no anti-elastolytic role for these inhibitors has been elucidated. In this study, we identified an Asiatic honeybee (Apis cerana) chymotrypsin inhibitor (AcCI), which was shown to also act as an elastase inhibitor. AcCI was found to consist of a 65-amino acid mature peptide that displays ten cysteine residues. When expressed in baculovirus-infected insect cells, recombinant AcCI demonstrated inhibitory activity against chymotrypsin (Ki 11.27 nM), but not trypsin, defining a role for AcCI as a honeybee-derived chymotrypsin inhibitor. Additionally, AcCI showed no detectable inhibitory effects on factor Xa, thrombin, plasmin, or tissue plasminogen activator; however, AcCI inhibited human neutrophil elastase (Ki 61.05 nM), indicating that it acts as an anti-elastolytic factor. These findings constitute molecular evidence that AcCI acts as a chymotrypsin/elastase inhibitor.  相似文献   

7.
Soluble proteins released into the medium of aortic tissues in culture behave as substrates for the enzyme lysyl oxidase. The reaction shows an unusual dependence on the concentration of neutral salts in the assay medium. Practically no enzyme activity was observed in Tris-HCl, 0.005 m, pH 7.6 buffer. However, supplementing the buffer with high concentrations of KCl, KBr, NaCl, and (NH4)2SO4 (in decreasing order of effectiveness) accelerated velocities as much as 10-fold. CaCl2, KSCN, and KI at increasing concentrations became strongly inhibitory. β-Aminopropionitrile, a specific inhibitor of lysyl oxidase, effectively blocked the catalysis in low and high KCl. The salt-stimulated effects on lysyl oxidase activity were not as noticeable when insoluble proteins were used as substrates. Kinetic studies employing double reciprocal plots revealed that high KCl concentrations (2.0 m) raised the maximum velocity of the reaction but did not alter the apparent Km. Thus high salt concentrations did not affect the binding of the soluble substrate to the enzyme. In high salts, however, more radioactive substrate proteins appeared to bind to the enzyme, suggesting that the high salt environment increases the fraction of the total enzyme potentially capable of binding to and catalyzing a reaction with the substrate.  相似文献   

8.
The addition of a trifluoroacetyl (TFA) group to the amino-terminal end of some short peptides has been found to enhance their affinity for the serine protease elastase.X-ray analysis of a crystal from a mixture of solutions of elastase and the most potent inhibitor in the TFA series, TFA-Lys-Ala-NH-C6H4-p-CF3, shows the CF3CO group at the S1 subsite in the active site of elastase, and the dipeptide anilide bound at sites close to the S′1 to S′3 subsites with the dipeptide portion associated in a parallel pleated-sheet fashion with the protein chain. This arrangement contrasts sharply with the binding of N-acetylated short peptide inhibitors with elastase.Diffraction data were measured for crystals of native elastase (NAT) and the elastase/inhibitor crystals (TFAP). The inhibitor molecule was located in a difference Fourier map having coefficients ΔF = ¦FTFAP¦? ¦FNAT¦, and phases calculated from the known atomic co-ordinates of NAT. The parameters of the elastase and inhibitor molecules were refined to R = 0.21 for 7187 “observed” reflections at a resolution of 2.5 Å.  相似文献   

9.
The metabolism of phosphatidylglycerol and lysyl phosphatidylglycerol was studied in Staphylococcus aureus under four conditions: growing at pH 7.0 and 5.2, and not growing (resting) at pH 7.0 and 5.2. Measurements of the amounts of phosphatidylglycerol and lysyl phosphatidylglycerol, as well as labeling and pulsechase experiments, revealed that the phosphate group of the former and the lysyl group of the latter were in a state of active turnover. A marked decline in the cellular level of phosphatidylglycerol observed when cells were resting at pH 5.2 was found to be caused by both a decrease in synthesis and an increase in catabolism. The level of lysyl phosphatidylglycerol was found to be relatively constant under the four incubation conditions, although the lysyl moiety was in a state of turnover. Experiments designed to test the possible role of lysyl phosphatidylglycerol as a lysyl group donor in biosynthetic processes or in lysine transport were negative; no evidence to support the hypothesis that lysyl phosphatidylglycerol serves as an intermediate was obtained.  相似文献   

10.
A novel alkaloid, aristopyridinone A (1) and a new phenanthrene, aristolamide II (2), were isolated from Aristolochia manshuriensis (Guanmutong) together with eight known phenanthrenes (3-10). All structures were elucidated by spectroscopic methods. Compound 2 showed a selective inhibitory effect on elastase release by human neutrophils in response to fMLP with an IC50 value of 4.11 μg/mL. Compound 7 exhibited significant inhibitory effects on superoxide anion generation and elastase release with IC50 values of 0.12 and 0.20 μg/mL, respectively.  相似文献   

11.
Oxidation of the reactive site methionine (Met) in α-1-proteinase inhibitor (α-1-PI) to methionine sulfoxide (Met(O)) is known to cause depletion of its elastase inhibitory activity. To estimate the selectivity of different oxidants in converting Met to Met(O) in α-1-PI, we measured the molar ratio Met(O)/α-1-PI at total inactivation. This ratio was determined to be 1.2 for both the myeloperoxidase/H2O2/chloride system and the related compound NH2Cl. With taurine monochloramine, another myeloperoxidase-related oxidant, 1.05 mol Met(O) were generated per mol α-1-PI during inactivation. These oxidants attack preferentially one Met residue in α-1-PI, which is identical with Met 358, as concluded from the parallelism of loss of elastase inhibitory activity and oxidation of Met. A similar high specificity for Met oxidation was determined for the xanthine oxidase-derived oxidants. In contrast, the ratio found for ozone and m-chloroperoxybenzoic acid was 6.0 and 5.0, respectively, indicating oxidation of additional Met residues besides the reactive site Met in α-1-PI, i.e. unselective action of these oxidants. Further studies were performed on the efficiency of oxidants for total depletion of the elastase inhibitory capacity of α-1-PI. Ozone and m-chloroperoxybenzoic acid were 10-fold less effective and the superoxide anion/hydroxyl radicals were 30–50-fold less effective to inactivate the elastase inhibitory activity as compared to the myeloperoxidase-derived oxidants. The myeloperoxidase-related oxidants are discussed as important regulators of α-1-PI activity in vivo.  相似文献   

12.
A 1:1 stoichiometry of inhibition of human pancreatic elastase 2 by human α1-antitrypsin has been determined. The molar binding ratio was calculated using the results of a titration curve for elastase 2 inhibition by α1-antitrypsin, an experimentally determined concentration of active sites in human elastase 2, and an extinction coefficient calculated from ultracentrifugation studies using interference optics.  相似文献   

13.

Objective

Insect-derived serine protease inhibitors (serpins) exhibit multiple inhibitory activities, but so far, no functional roles for serpins of Musca domestica have been identified. Here, the functional features of M. domestica serine protease inhibitor (MDSPI16) were characterized.

Results

Hundred forty seven differentially expressed genes including the MDSPI16 gene were screened by constructing the subtractive cDNA library. The 1154-bp full-length MDSPI16 gene was cloned, and the recombinant MDSPI16 serpin protein was expressed as a 42.6 kDa protein in an Escherichia coli expression system. The recombinant MDSPI16 protein was purified using Ni–NTA affinity chromatography, and the inhibitory activity of MDSPI16 was assessed. MDSPI16 did not inhibit trypsin, papain, or proteinase K but strongly inhibited elastase (Ki = 2.8 nM) and chymotrypsin (Ki = 28 nM). The inhibitory activity of MDSPI16 remained stable over from 37 to 100 °C and from pH 2 to 12.

Conclusions

The MDSPI16 exhibited inhibitory activity against elastase and chymotrypsin and the inhibitory activity remained stable.
  相似文献   

14.
A series of mechanism-based inhibitors designed to interact with the S′ subsites of serine proteases was synthesized and their inhibitory activity toward the closely-related serine proteases human neutrophil elastase (HNE) and proteinase 3 (PR 3) was investigated. The compounds were found to be time-dependent inhibitors of HNE and were devoid of any inhibitory activity toward PR 3. The results suggest that highly selective inhibitors of serine proteases whose primary substrate specificity and active sites are similar can be identified by exploiting differences in their S′ subsites. The best inhibitor (compound 16) had a kinact/KI value of 4580 M?1 s?1.  相似文献   

15.
The protein inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinases from skeletal muscle was subjected to various chemical and enzymatic treatments in an attempt to delineate the part of the molecule responsible for the interaction with the catalytic subunit of the kinase. Only a small portion of the chain seems to be required since thermolysin and staphylococcal protease digestions do not abolish the inhibitory properties. This inhibitory site must contain the essential arginyl side chain(s), whereas lysyl and carboxylic side chains do not appear to be involved in the interaction with the catalytic subunit.Digestion of the COOH-terminus of the inhibitor by carboxypeptidase Y results in a doubling of the Ki value. On the other hand, an inhibitory pentadecapeptide (Ki = 25 nM), presumably NH2-terminal in the entire molecule, could be isolated from a staphylococcal protease digest by means of gel filtration followed by ion exchange on phosphocellulose. The purified inhibitory peptide contains two out of the four arginyl residues present in the entire molecule. The remarkable affinity and specificity of the protein kinase inhibitor for the catalytic subunit of adenosine 3′,5′-monophosphate-dependent protein kinases may thus be tentatively explained on the basic of a two-prong attachment of the inhibitor. The NH2-terminal portion of the chain would bind at the substate binding site, whereas the COOH-terminal part would be held elsewhere.  相似文献   

16.
Human plasma prekallikrein, precursor of the bradykinin-generating enzyme, was activated in a purified system under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37°C) by Pseudomonas aeruginosa elastase which is a tissue-destructive metalloproteinase. Compared with that, Pseudomonas aeruginosa alkaline proteinase poorly activated it with a rate as low as less than one-twentieth of that of elastate. The activation by elastase was blocked with a specific inhibitor of elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2 (10 μM). Generation of kallikrein-like amidolytic activity was also observed in plasma deficient in Hageman factor by treatment with elastase, but was not in plasma deficient in prekallikrein. The kallikrein-like activity generated in Hageman factor deficient plasma as well as the generation process itself was indeed inhibited by antihuman prekallikrein goat antibody. These results suggest that the pathological activation of the kallikrein-kinin system might occur under certain clinical conditions in pseudomonal infections.  相似文献   

17.
A new and probably unique elastase inhibitor of horse serum was identified, purified to homogeneity and called pre-α2-elastase inhibitor of the horse. Electrophoretically it migrated immediately in front of the α2 position. Its molecular weight was 188 000 by pore limit polyacrylamide gel electrophoresis and 225 000 by Sephadex G-200 gel filtration. The inhibitor was composed of at least two non-identical polypeptide chains of Mr 68 400 and 87 600. A banding pattern of restricted heterogeneity focused between pH 4.9 and 5.2 was revealed by isoelectric focusing. Of 13 animal, microbial and plant proteinases, horse pre-α2-elastase inhibitor inhibited only pancreatic elastase and trypsin efficiently. Chymotrypsin was inhibited only in traces. No analogy between the elastase inhibitor and the known human serum inhibitors could be found with respect to immunological and biochemical criteria.  相似文献   

18.
Recently we reported a preliminary characterization of anti-elastase activity which is found in cultured keratinocytes and in epidermis from psoriasis patients, but not in normal human epidermis. Here we present evdence that this inhibitory activity is derived from a cationic protein with a molecular mass of 18 kDa. In psoriatic scales the inhibitor is mainly present as a biologically active 11 kDa fragment. Inhibition of human leukocyte elastase in strong (Ki = 2·10?11 M) and fast (kon = 107 M?1·?1). Using chromatofocusing, affinity chromatography and gel-permeation FPLC, the 11 kDa fragment was purified from psoriatic scales. This preparation was reduced and carboxymethylated, blotted into (vinylidene difluoride) membrane and subjected to N-terminal gas-phase sequencing. Within a stretch of 16 amino acids a 40% homology was found with the active site of antileukoproteinase (ALP) a known serine proteinase inhibitor present in mucous secretions. We therefore propose the acronym SKALP (skin-derived antileukoproteinase) as a name for this elastase inhibitor.  相似文献   

19.
Herein, we describe the synthesis and resulting activity of a complex series of α-aminophosphonate diaryl esters as irreversible human neutrophil elastase inhibitors and their selectivity preference for human neutrophil elastase over several other serine proteases such as porcine pancreatic elastase, trypsin, and chymotrypsin. We synthesized and examined the inhibitory potency of several new simple Cbz-protected α-aminoalkylphosphonate diaryl esters that yielded several new HNE inhibitors, where one of the obtained compounds Cbz-ValP(OC6H4-4-COOMe)2 displayed an apparent second-order inhibition value at 33,015 M−1 s−1.  相似文献   

20.
Digestion of native rabbit liver fructose-1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) with a membrane-bound proteinase from rat liver lysosomes yields a fragment of Mr = 9850. This peptide contains the COOH terminus of the Fru-P2ase polypeptide chain and also the cyanogen bromide peptide (BrCN5) carrying the active site lysyl residue. The sequence of BrCN5 and its location with respect to the COOH terminus of the polypeptide chain have been determined. The active site lysyl residue is located at approximately residue ?54 from the COOH terminus. The bond hydrolyzed by the lysosomal proteinase is located between residues ?88 and ?89 from the COOH terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号