首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Aspergillus fumigatus is responsible for a large percentage of nosocomial opportunistic fungal infections in immunocompromised hosts, especially during cytotoxic chemotherapy and after bone marrow transplantation, and is currently a major direct cause of death in leukemia patients. Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is a type II C-type lectin that functions as an adhesion receptor and is used by viral and bacterial pathogens to gain access to human DC. We report that DC-SIGN specifically interacts with clinical isolates of A. fumigatus. DC-SIGN-dependent binding of A. fumigatus conidia can be demonstrated with stable transfectants and monocyte-derived DC and is inhibited by anti-DC-SIGN Abs. Binding and internalization of A. fumigatus conidia correlates with DC-SIGN cell surface expression levels and is abolished in the presence of A. fumigatus-derived cell wall galactomannans. The clinical relevance of this interaction is emphasized by the presence of DC-SIGN in lung DC and alveolar macrophages, and further illustrated by the DC-SIGN-dependent attachment of A. fumigatus conidia to the cell membrane of IL-4-treated monocyte-derived macrophages. Our results suggest the involvement of DC-SIGN in the initial stages of pulmonary infection as well as in fungal spreading during invasive aspergillosis.  相似文献   

2.
3.
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is a type II C-type lectin that functions as an adhesion receptor and mediates binding and internalization of pathogens such as virus (human immunodeficiency virus, hepatitis C), bacteria (Mycobacterium), fungi, and parasites. DC-SIGN expression in vivo is primarily restricted to interstitial dendritic cells (DC) and certain tissue macrophages. We now report that leukemic THP-1 cells, widely used as a model for monocyte-macrophage differentiation, express very low basal levels of DC-SIGN and that DC-SIGN expression in THP-1 cells is regulated during differentiation. Differentiation-inducing agents (phorbol ester, bryostatin) conveyed THP-1 cells with the ability to up-regulate DC-SIGN mRNA levels and cell surface expression in response to interleukin-4 (IL-4) or IL-13. DC-SIGN up-regulation required a functional JAK-STAT signaling pathway, was inhibited in the presence of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha), and conferred THP-1 cells with increased pathogen recognition and T cell stimulatory capabilities. The up-regulation of DC-SIGN on THP-1 cells resembles its inducible expression on monocytes and macrophages, where DC-SIGN expression is also induced by IL-4/IL-13 and negatively regulated by TNF-alpha, LPS, and vitamin D(3). These results point to THP-1 cells as a useful cellular system to characterize the pathogen-binding capabilities of DC-SIGN and to dissect the molecular mechanisms that control its regulated and tissue-specific expression in myeloid dendritic cells, and the results suggest that DC-SIGN constitutes a marker for both DC and alternatively activated macrophages.  相似文献   

4.
We report a new dendritic cell adhesion assay, using either immature or mature dendritic cells, for identifying functional dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) inhibitors. Because immature dendritic cells are responsible for pathogen binding and invasion, this in vitro assay provides an important link between in vitro results and pathogen-based in vivo assays. Furthermore, this assay does not require laborious expression, refolding, and purification of DC-SIGN carbohydrate recognition domain or extracellular domain as receptor-based assays. The assay power evaluated with Z and Z′ parameters enables screening of compound libraries and determination of IC50 values in the first stage of DC-SIGN inhibitor development.  相似文献   

5.
6.
The dendritic-cell-specific intercellular adhesion molecule nonintegrin (DC-SIGN) CD209 is a receptor for Escherichia coli K-12 that promotes bacterial adherence and phagocytosis. However, the ligand of E. coli for DC-SIGN has not yet been identified. In this study, we found that DC-SIGN did not mediate the phagocytosis of several pathogenic strains of E. coli, including enteropathogenic E. coli, enterohemorrhagic E. coli, enterotoxigenic E. coli, and uropathogenic E. coli, in dendritic cells or HeLa cells expressing human DC-SIGN antigen. However, we showed that an outer core lipopolysaccharide (LPS) (rough) mutant, unlike an inner core LPS (deep rough) mutant or O-antigen-expressing recombinant of E. coli K-12 was phagocytosed. These results demonstrate that the host cells expressing DC-SIGN can phagocytose E. coli in part by interacting with the complete core region of the LPS molecule. These results provide a mechanism for how O antigen acts as an antiphagocytic factor.  相似文献   

7.
Dendritic cells are potent antigen-presenting cells that express several membrane lectins, including the mannose receptor and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin). To identify highly specific ligands for these dendritic cell receptors, oligosaccharides were converted into glycosynthons (Os1) and were used to prepare oligolysine-based glycoclusters, Os-[Lys(Os)]n-Ala-Cys-NH2. Clusters containing two to six dimannosides as well as clusters containing four or five pentasaccharides (Lewisa or Lewisx) or hexasaccharides (Lewisb) were synthesized. The thiol group of the appended cysteine residue allows easy tagging by a fluorescent probe or convenient substitution with an antigen. Surface plasmon resonance was used to determine the affinity of the different glycoclusters for purified mannose receptor and DC-SIGN, whereas flow cytometry and confocal microscopy analysis allowed assessment of cell uptake of fluoresceinyl-labeled glycoclusters. Dimannoside clusters are recognized by the mannose receptor with an affinity constant close to 106 liter.mol-1 but have a very low affinity for DC-SIGN (less than 104 liter x mol-1). Conversely, Lewis clusters have a higher affinity toward DC-SIGN than toward the mannose receptor. Dimannoside clusters are efficiently taken up by human dendritic cells as well as by rat fibroblasts expressing the mannose receptor but not by HeLa cells or rat fibroblasts expressing DC-SIGN; DC-SIGN-expressing cells take up Lewis clusters. The results suggest that ligands containing dimannoside clusters can be used specifically to target the mannose receptor, whereas ligands containing Lewis clusters will be targeted to DC-SIGN.  相似文献   

8.
Dengue virus (DV) is a mosquito-borne flavivirus that causes hemorrhagic fever in humans. In the natural infection, DV is introduced into human skin by an infected mosquito vector where it is believed to target immature dendritic cells (DCs) and Langerhans cells (LCs). We found that DV productively infects DCs but not LCs. We show here that the interactions between DV E protein, the sole mannosylated glycoprotein present on DV particles, and the C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) are essential for DV infection of DCs. Binding of mannosylated N-glycans on DV E protein to DC-SIGN triggers a rapid and efficient internalization of the viral glycoprotein. However, we observed that endocytosis-defective DC-SIGN molecules allow efficient DV replication, indicating that DC-SIGN endocytosis is dispensable for the internalization step in DV entry. Together, these results argue in favor of a mechanism by which DC-SIGN enhances DV entry and infection in cis. We propose that DC-SIGN concentrates mosquito-derived DV particles at the cell surface to allow efficient interaction with an as yet unidentified entry factor that is ultimately responsible for DV internalization and pH-dependent fusion into DCs.  相似文献   

9.
Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA.  相似文献   

10.
The myeloid C-type lectin dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN, CD209) recognizes oligosaccharide ligands on clinically relevant pathogens (HIV, Mycobacterium, and Aspergillus). Alternative splicing and genomic polymorphism generate DC-SIGN mRNA variants, which have been detected at sites of pathogen entrance and transmission. We present evidence that DC-SIGN neck variants are expressed on dendritic and myeloid cells at the RNA and protein levels. Structural analysis revealed that multimerization of DC-SIGN within a cellular context depends on the lectin domain and the number and arrangement of the repeats within the neck region, whose glycosylation negatively affects oligomer formation. Naturally occurring DC-SIGN neck variants differ in multimerization competence in the cell membrane, exhibit altered sugar binding ability, and retain pathogen-interacting capacity, implying that pathogen-induced cluster formation predominates over the basal multimerization capability. Analysis of DC-SIGN neck polymorphisms indicated that the number of allelic variants is higher than previously thought and that multimerization of the prototypic molecule is modulated in the presence of allelic variants with a different neck structure. Our results demonstrate that the presence of allelic variants or a high level of expression of neck domain splicing isoforms might influence the presence and stability of DC-SIGN multimers on the cell surface, thus providing a molecular explanation for the correlation between DC-SIGN polymorphisms and altered susceptibility to HIV-1 and other pathogens.  相似文献   

11.
Dendritic cells (DCs) possess a number of unique features that distinguish them from other APCs. One such feature is their ability to trigger Ag-independent responses in T cells. Previous studies have focused on mature DCs, but the prevalence of this phenomenon in the resting-state immature DCs has never been considered. In this study, we show that, in the absence of Ag, human immature DCs trigger multiple responses in autologous primary CD4+ T cells, namely, increased motility, small Ca2+ transients, and up-regulation of CD69. These responses are particularly marked in CD4+ memory T cells. By using several experimental approaches, we found that DC-specific ICAM-3-grabbing nonintegrin plays no role in the induction of T cell responses, whereas ICAM-1/LFA-1 interactions are required. In addition, DC-produced chemokines contribute to the Ag-independent T cell stimulatory ability of DCs, because pertussis toxin-treated T cells exhibit diminished responses to immature DCs. More particularly, CCL17 and CCL22, which are constitutively produced by immature DCs, mediate both T cell polarization and attraction. Thus, immature DCs owe part of their outstanding Ag-independent T cell stimulatory ability to chemokines and ICAM-1, but not DC-specific ICAM-3-grabbing nonintegrin.  相似文献   

12.
The carcinoembryonic antigen (CEA) family consists of a large group of evolutionarily divergent glycoproteins. The secreted pregnancy-specific glycoproteins constitute a subgroup within the CEA family. They are predominantly expressed in trophoblast cells throughout placental development and are essential for a positive outcome of pregnancy, possibly by protecting the semiallotypic fetus from the maternal immune system. The murine CEA gene family member CEA cell adhesion molecule 9 (Ceacam9) also exhibits a trophoblast-specific expression pattern. However, its mRNA is found only in certain populations of trophoblast giant cells during early stages of placental development. It is exceptionally well conserved in the rat (over 90% identity on the amino acid level) but is absent from humans. To determine its role during murine development, Ceacam9 was inactivated by homologous recombination. Ceacam9(-/-) mice on both BALB/c and 129/Sv backgrounds developed indistinguishably from heterozygous or wild-type littermates with respect to sex ratio, weight gain, and fertility. Furthermore, the placental morphology and the expression pattern of trophoblast marker genes in the placentae of Ceacam9(-/-) females exhibited no differences. Both backcross analyses and transfer of BALB/c Ceacam9(-/-) blastocysts into pseudopregnant C57BL/6 foster mothers indicated that Ceacam9 is not needed for the protection of the embryo in a semiallogeneic or allogeneic situation. Taken together, Ceacam9 is dispensable for murine placental and embryonic development despite being highly conserved within rodents.  相似文献   

13.
14.
15.
16.
The activities to induce TNF-alpha production by a monocytic cell line, THP-1, and ICAM-1 expression and IL-6 production by human gingival fibroblasts were detected in plural membrane lipoproteins of Mycoplasma salivarium. Although SDS-PAGE of the lipoproteins digested by proteinase K did not reveal any protein bands with molecular masses higher than approximately10 kDa, these activities were detected in the front of the gel. A lipoprotein with a molecular mass of 44 kDa (Lp44) was purified. Proteinase K did not affect the ICAM-1 expression-inducing activity of Lp44, but lipoprotein lipase abrogated the activity. These results suggested that the proteinase K-resistant and low molecular mass entity, possibly the N-terminal lipid moiety, played a key role in the expression of the activity. The N-terminal lipid moiety of Lp44 was purified from Lp44 digested with proteinase K by HPLC. Judging from the structure of microbial lipopeptides as well as the amino acid sequence and infrared spectrum of Lp44, the structure of the N-terminal lipid moiety of Lp44 was speculated to be S-(2, 3-bisacyloxypropyl)-cysteine-GDPKHPKSFTEWV-. Its analogue, S-(2, 3-bispalmitoyloxypropyl)-cysteine-GDPKHPKSF, was synthesized. The lipopeptide was similar to the N-terminal lipid moiety of Lp44 in the infrared spectrum and the ICAM-1 expression-inducing activity. Thus, this study suggested that the active entity of Lp44 was its N-terminal lipopeptide moiety, the structure of which was very similar to S-(2, 3-bispalmitoyloxypropyl)-cysteine-GDPKHPKSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号